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Abstract

Evidence from administrative data reveals increasing participation in risky as-
sets, expected returns and idiosyncratic return risk over the wealth distribution. We
explain these patterns quantitatively with an incomplete markets model with endoge-
nous portfolio choice, cyclical labor income risk, and preference heterogeneity. As a
by-product of this approach, our framework also generates wealth inequality, wealth
mobility and marginal propensities to consume as a function of wealth closely in
line with data. Simultaneously fitting wealth and portfolio choices delivers a larger
andmore persistent increase in wealth inequality following an aggregate return shock.
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1 Introduction

The high level of inequality in advanced economies is one of the most discussed
issues in economics of the last decades. Among the several possible explanations of the
highly skewed distribution of wealth,1 a particularly promising one emphasizes the role of
capital income: if the rich experience systematically higher returns on their savings than
the poor, wealth concentration increases. In line with this view, recent empirical literature
leveraging high-quality administrative data (Bach et al., 2020; Fagereng et al., 2020) has
documented that participation in risky assets, expected returns and idiosyncratic return
risk increase over the wealth distribution.

The relationship between portfolio choices and wealth is also a key determinant of
changes in inequality following economic shocks or policy changes. As an example,
consider a sudden increase in stock market returns. How does such a shock impact the
cross-sectional distribution of wealth and for how long does the effect persist? First, since
capital gains equal the product of wealth and returns, the contemporaneous response
in inequality critically depends on the joint distribution of the latter two. Second, the
long-run response hinges on how individuals adjust their investment choices to the
additional capital income. Hence, any attempt to evaluate distributional consequences
must account for the heterogeneity in portfolio composition resulting from agents’ optimal
decisions. The same logic applies to a wide range of policy questions, such as the
redistributive implications of capital income or wealth taxation.

Nevertheless, a model that endogenously generates a joint distribution of wealth
and portfolio choices quantitatively in line with the data is, to the best of our knowledge,
still missing. On the one hand, while the household finance literature starting with
Cocco et al. (2005) has proposed several mechanisms to explain the low risk-taking of
the poor,2 as matching wealth inequality is outside the scope of papers in this field, it is
unknown if these solutions can quantitatively fit the increasing expected returns and return

1See De Nardi and Fella (2017) and Benhabib and Bisin (2018) for a review.
2Vissing-Jorgensen (2003) points out the role of participation costs, Wachter and Yogo (2010) highlight the
role of non-homothetic preferences, while Chang et al. (2018) and Catherine (2021) emphasize the role of
labor income risk. We discuss the related literature in detail in the following section.
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risk schedules over the whole distribution. This is crucial because the overwhelming
majority of wealth is held by the richer half of the population. Therefore, undershooting
their risky investments could lead to substantial biases in both aggregate quantities and
distributional changes, even if the portfolio choices of the poor are perfectly matched.
On the other hand, the wealth inequality literature has avoided the notoriously difficult
task of generating an increasing relationship between the risky share and wealth as a
result of optimal choices by either hard-wiring differences in portfolio returns (Benhabib
et al., 2019; Hubmer et al., 2021) or attributing them purely to luck (Benhabib et al.,
2015; Nirei and Aoki, 2016). As a consequence, these models are not immune to the
Lucas critique and, therefore, are less suited to study changes affecting portfolio choices.

This paper aims to fill this gap with a model that explains the observed wealth and
portfolio heterogeneity in the data at once. Besides incomplete markets and endogenous
portfolio choice, our framework features cyclical skewness in labor income shocks
– that is, negative labor income outcomes are more likely in times of stock market
crashes – and ex-ante heterogeneity in preferences and idiosyncratic return risk across
individuals. We estimate the model parameters by targeting the increasing schedules
of participation, expected excess returns, and idiosyncratic return risk over the wealth
distribution documented in Bach et al. (2020), and find that our framework matches these
portfolio choice moments very well thanks to the latter two elements mentioned above,
as we explain next.

As pointed out by Catherine (2021), cyclical skewness in labor income shocks
introduces significant background risk for agents whose net worth mostly consists of
human capital. We show that while this mechanism explains the depressed risk-taking
at the bottom of the wealth distribution, it falls short in explaining portfolio choices at
the top half of the wealth distribution. This is because when individuals accumulate
enough savings to self-insure against labor income shocks, the importance of the latter for
optimal portfolio allocations becomes negligible. As a result, in a model in which agents
are ex-ante identical, the share of wealth invested in risky assets eventually declines over
the distribution, as first described by Cocco et al. (2005).

This is where the ex-ante heterogeneity becomes relevant. In our framework,
individuals are of two different types. As an outcome of the model estimation, one type

3



of agents is characterized by high risk aversion, low patience and reduced idiosyncratic
return risk. The other type is characterized by the opposite traits. Thus, mainly thanks to
their higher patience, less risk-averse agents who choose a higher share invested in risky
assets endogenously end up in the right part of the wealth distribution. The compositional
effect resulting from the rising fraction of these individuals as a function of wealth thus
delivers the increasing relationship between wealth and the risky share even for the
highest quantiles of the distribution. Additionally, as these agents are characterized by
higher idiosyncratic return risk, we also match the higher share of idiosyncratic variance
at the top.

The estimation of ex-ante heterogeneity across individuals in our model also bridges
the often inconsistent preference parameter values across the household finance and
macroeconomics literature. Studies in household finance – typically explaining savings
and portfolio choices of the average household – frequently find yearly discount rates
around 8% and relative risk aversion coefficients above six (e.g., Catherine, 2021;
Fagereng et al., 2017), while the macroeconomics literature – typically setting preference
parameters to match aggregate quantities – usually operates with values less than half
of these two figures. Consistent with these differences, in our benchmark specification
90% of the agents feature relatively low patience and high risk aversion in line with the
household finance literature. Yet, these agents do not accurately represent the whole
economy: even though only 10% of the population is characterized by relatively high
patience and low risk aversion – typical in the macroeconomics literature – their impact on
aggregates is crucial, as these individuals concentrate on the top of the wealth distribution
and hold more than half of total wealth.

As a by-product of matching the portfolio schedules over wealth, our framework
also delivers a close fit of three non-targeted key characteristics of the wealth distribution.
First, the model replicates the degree of wealth inequality observed in administrative data.
In particular, compared to the previous literature, the implied shares of wealth held by
different segments of the wealth distribution are remarkably close to their counterpart in
the data, even for the richest 1%. Together with the targeted portfolio choice patterns, this
ensures that the joint distribution of wealth and risky assets generated by our framework
is empirically sound. Second, mobility across wealth groups is also consistent with
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existing empirical evidence (Bach et al., 2020; Benhabib et al., 2019). This is relevant
both for accurately measuring the welfare cost of inequality and for delivering a realistic
dynamic evolution of the wealth distribution. Third, the marginal propensity to consume
– a crucial determinant of responses to economic shocks – decreases over wealth in a
way quantitatively in line with earlier literature (Carroll et al., 2017; Kaplan et al., 2018).
While these quantities have been replicated before separately, our framework fits all
of them at once without any additional ingredient besides those needed for generating
empirically plausible portfolio compositions over wealth. We take this result as indirect
evidence that our model mechanisms are consistent with how wealth inequality emerges
in reality.

As a next step, we confirm the last statement with a counterfactual analysis.
Specifically, we isolate the importance of matching portfolio schedules in delivering
the joint match of the above features by shutting down key elements of our model one
at a time. We solve a version with homogeneous preferences, one with heterogeneity
only in the discount factor and one without idiosyncratic risk in individual portfolios,
and find in all cases that either the match of the portfolio schedules, wealth inequality
or mobility is worsened.3 This exercise also highlights the importance of allowing for
preference heterogeneity in several dimensions simultaneously. For example, while it
is known at least since Krusell and Smith (1998) that differences in discount factors
can generate realistic levels of inequality, in our counterfactual analysis we find that
when only heterogeneity in this parameter is allowed for, the model indeed generates
higher levels of wealth inequality but implies too low mobility at the top and unrealistic
portfolio choice patterns.

Lastly, motivated by the example at the beginning of this introduction, we quantify
the response of wealth inequality to a 10% aggregate return shock. While the shock has a
positive and persistent effect on aggregate wealth, the impact is very heterogeneous across
agents. On the one hand, due to their higher risky share, wealthier individuals experience
larger capital gains. This translates into a 0.2 percentage points higher share of wealth

3In Appendix D, we find similar results also when considering a counterfactual economy with heterogeneity
only in risk aversion, one without cyclical skewness in labor income shocks and one with hard-wired
portfolio choices.
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held by the top 1% on impact.4 On the other hand, as the rich are also more patient,
they reinvest a larger fraction of the additional capital income, which, together with their
higher propensity to invest in risky assets, makes the effect on inequality long lasting.
Indeed, even though the model generates high top mobility levels as in the data, it takes
about one hundred years for the initial effect to be halved. To highlight the importance of
matching portfolio choice patterns over wealth also in this dynamic context, we show that
the counterfactual model limiting the extent of ex-ante preference heterogeneity to only
differences in patience results in a decrease in the share of wealth held by the top 1%
and in a less persistent effect, following the positive return shock. The reason is that this
alternative specification – despite replicating the degree of observed wealth inequality –
fails to generate the large capital gains of the rich because it predicts a decreasing risky
share as a function of assets in the right tail of the wealth distribution. Consistent with
this explanation, we further document that this bias is magnified in a model with only one
type of agents, which, in addition to producing such a decreasing relationship already
from lower wealth levels, also implies much less wealth concentration at the top. We
conclude, therefore, that not matching portfolio choice patterns over a realistic wealth
distribution might lead to incorrect policy conclusions, even when investment decisions
are not the main focus of the analysis.

Related literature. This paper contributes to and connects the household finance
literature on portfolio choice and the macroeconomics literature on wealth inequality.

Starting from Cocco et al. (2005), a sizable literature in household finance has
analyzed the portfolio choices of households in life-cycle models.5 The focus of such
papers has mostly been understanding the optimal portfolio allocation of the average
investor, and how that is influenced by age. Our contribution to this literature is extending
this analysis over the wealth distribution. We take a state-of-the-art explanation for
portfolio choices over the life-cycle by assuming labor income shocks featuring cyclical

4To see that this effect is non-negligible, note that in the extreme scenario in which the top 1% holds only
stocks and the bottom 99% only bonds, the wealth distribution generated by our model would imply a
response of 1.7 percentage points.

5See Gomes (2020) for a review.
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skewness6 and show that when wealth inequality is as high as in the data, this mechanism
is unable to rationalize the increasing risky shares over the top half of the wealth
distribution. To rationalize the portfolio allocation decisions of the rich, we introduce
preference and idiosyncratic return risk heterogeneity in the model, and find that one can
obtain an accurate match for participation, risky share and idiosyncratic risk schedules
already with two types of households. In addition to matching the risky shares of the rich,
we also show how that helps to obtain realistic wealth inequality, marginal propensities
to consume and invest, and mobility across the wealth distribution. Due to the use of
different kinds of models, exploring these consequences has been, so far, outside of the
scope of household finance papers.

Turning to preference heterogeneity, two related household finance papers on this
topic are Gomes and Michaelides (2005) and Vestman (2018).7 The latter investigates
the effects of joint heterogeneity in risk aversion, elasticity of intertemporal substitution
(EIS) and participation costs on stock market participation patterns and their connection
with home-ownership. However, the author does not consider the risky share, which
is the main focus of our paper. The former work, instead, utilizes heterogeneity in
risk aversion and EIS to explain participation and risk-taking of the poor. Our model
rationalizes the same targets via skewed labor income shocks and instead fits portfolio
allocations on the top of the wealth distribution via preference heterogeneity.8

Several papers in the wealth inequality literature that explain moments of the
wealth distribution and marginal propensities to consume apply preference heterogeneity.
Krusell and Smith (1998), Krueger et al. (2016) and Hubmer et al. (2021) all use a

6This property of the income process was first documented by Guvenen et al. (2014) using U.S. data and
has then been confirmed for other countries and different measures of earnings by Busch et al. (2022).
Theoretically, Catherine (2021) illustrates that cyclical skewness of labor income shocks can generate the
increasing risky share over the life-cycle found in the data with reasonable participation costs. Empirically,
using Swedish registry data, Catherine et al. (2024) document that workers facing higher cyclical skewness
display lower risky shares.

7In another recent contribution, Ebrahimian and Sodini (2025) document that individual preferences are
correlated with parental background, which, in turn, limits intergenerational mobility.

8Our specification also allows for heterogeneity in the elasticity of intertemporal substitution (EIS). However,
as discussed below in Section 3, in this paper we abstract from it because the lack of differences in liquidity
between assets in our framework does not allow us to identify well this parameter (Aguiar et al., 2024).
Nevertheless, we conduct a sensitivity analysis to see how our results change for different values of EIS.
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stochastic process that generates heterogeneity in discount factors to improve the fit of the
wealth distribution. Carroll et al. (2017) and Aguiar et al. (2024) show that preference
heterogeneity also helps in bringing the distribution of marginal propensities to consume
and consumption growth more in line with the data. These papers, however, usually
calibrate the amount of heterogeneity directly by matching these moments of interest. We
instead show that information contained in the three portfolio choice schedules previously
described can identify a rich heterogeneity in preference parameters without targeting
any moment related to the wealth distribution. Moreover, we document that a good fit of
wealth inequality (even at the very top), marginal propensities to consume and invest
and wealth mobility can be achieved as a by-product of this approach. By doing so, we
show that various earlier studies in household finance and macroeconomics that explain
portfolio choices or wealth inequality, respectively, through preference heterogeneity,
are consistent with each other and can be rationalized by the same degree of preference
heterogeneity, which increases the plausibility of the latter as an underlying explanation.9
Furthermore, we illustrate how heterogeneity along several preference parameters at
the same time is crucial to achieve this result. Finally, as we use our framework to
structurally estimate the parameters governing preference heterogeneity, we also relate to
the emerging household finance literature in this area (Calvet et al., 2021).

Within the literature on wealth inequality, several papers theoretically investigate
the implications of return heterogeneity. Benhabib et al. (2011, 2015) and Nirei and Aoki
(2016) show in different settings that capital income risk generates a stationary wealth
distribution with a fat tail. Gabaix et al. (2016) further illustrate that heterogeneous
returns created by either type- or scale-dependence are also needed to generate the rapid
dynamics in the right tail of the distribution observed in the data. Benhabib et al. (2019),
Hubmer et al. (2021) and Gomez (2023) investigate the quantitative implications of return
heterogeneity and find that it plays a large role for the shape and dynamics of the wealth
distribution. Our main contribution with respect to this literature is endogenizing the

9Support for preference heterogeneity is motivated not only by the fact that this feature allows models to
match several important empirical moments, but also by substantial empirical micro evidence. For instance,
Lawrance (1991) and Epper et al. (2020) empirically document heterogeneity in time discounting and
von Gaudecker et al. (2011) find heterogeneity in risk preferences using an experiment in a representative
sample of Dutch respondents.
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portfolio allocation decision, as in these papers return heterogeneity is either hard-wired
or purely due to luck. More specifically, we show how a non-standard income process
and type-dependence through ex-ante differences in preference parameters across agents
are enough to generate realistic portfolio schedules and, through that, also a wealth
distribution with properties in line with the data. Additionally, we document that
explaining both the consumption/saving and portfolio allocation decisions endogenously
matters for the transmission of exogenous shocks.

There also exists a literature that attempts to rationalize the increasing risky share
over the wealth distribution. This is achieved via non-homothetic preferences by Carroll
(2000), Wachter and Yogo (2010) and Cioffi (2021): while the exact mechanisms
differ, all these papers endogenously produce a lower risk aversion for richer agents,
generating a positive correlation between wealth and the optimal risky share. Alternative
explanations include experience-based learning of expected stock returns (Foltyn, 2020),
and a crowding-out channel driven by the effect of human capital on optimal housing
decisions (Rácz, 2024). We view our contributions to this literature as complementary:
we explore preference heterogeneity as an alternative mechanism that is able to produce
an increasing risky share while generating a wealth distribution consistent with the data.
Importantly, none of these papers generates increasing risk-taking over a realistic wealth
distribution that also exhibits empirically plausible mobility patterns. Our model achieves
the latter through idiosyncratic risk in returns, which has been shown to be crucial
for obtaining realistic dynamics of wealth inequality by the aforementioned theoretical
literature.

The paper is structured as follows. Section 2 outlines the model, Section 3 describes
our estimation procedure and results, Section 4 presents the model-implied wealth
distribution, wealth mobility and marginal propensities to consume and invest, Section 5
investigates counterfactual specifications, Section 6 reports the dynamic implications of
an MIT shock to aggregate returns and Section 7 concludes.
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2 Model

In this section we outline the model framework. Our setting is a partial equilibrium
economy in the spirit of Bewley (1977), to which we add a non-normal return process,
cyclical skewness in labor income shocks, ex-ante heterogeneity in individual-specific
parameters and endogenous portfolio choice between a risky and a safe asset. The result
is a hybrid between the Bewley-type models used in macroeconomics to study inequality
and the household finance models used to study portfolio allocation (e.g., Cocco et al.,
2005).

Agents and preferences. The economy is populated by a continuum of infinitely
lived individuals deriving utility from consumption 28,C through Epstein-Zin preferences
(Epstein and Zin, 1989). Agents are ex-ante different in terms of preference parameters:
X8 captures their impatience, W8 their risk aversion and k8 the inverse of their elasticity of
intertemporal substitution.10 Preferences are, then, given by the following expression:

*8,C =

[
(1 − X8)21−k8

8,C
+ X8

(
EC*

1−W8
8,C+1

) 1−k8
1−W8

] 1
1−k8

.

We assume that preference parameters are fixed over time.11 When parameterizing the
model, we will allow for finitely many types of individuals, where a type is defined by a
combination of preference parameters.

Financial assets. Agents can invest in two financial assets, one risky, :8,C , with time-
varying individual-specific gross return '8,C+1, and one safe, 38,C , with constant gross
return ' 5 . Investing in the risky asset is subject to a participation cost 5 that is paid in
every period the agent chooses to hold that asset. Letting lower case letters indicate log

10The next paragraph provides a detailed explanation of another individual-specific parameter, Z8 , which
governs agents’ heterogeneity in terms of idiosyncratic return risk.

11We experimented with a version of the model in which switches across types were governed by a slow
moving Markov chain. As the key results were very similar, we decided to remove this feature in order to
reduce the number of free parameters.
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returns, A8,C+1 is equal to:

A8,C+1 = A1,C+1 + A2,C+1 + [8,C+1 − <.

The effective return individual 8 gets by investing in the risky asset is the sum of a
systematic component and an idiosyncratic component [8, net of a management fee
<. The systematic part consists, in turn, of a component co-varying with labor market
conditions, A1, and a component that is independent of labor market conditions, A2. The
former variable is distributed as follows:

A1,C+1 =


`
A

w.p. ?A

`A w.p. 1 − ?A
.

Without loss of generality, we interpret ?A as the probability of stock market crashes and
`
A
the log return during these periods. Similarly, 1 − ?A is the probability of normal

periods and `A the corresponding log return. As explained in Section 3.1, the presence
of stock market crashes and their effect on the distribution of labor income shocks play
a key role in generating realistic portfolio shares for the poor. The other systematic
component, A2, is drawn from a Normal distribution:

A2,C+1
8.8.3.∼ N

(
0, f2

A2

)
.

We add an idiosyncratic component [8,C+1 to the return process to understand the relative
importance of systematic and idiosyncratic return shocks. While it has been established
that under-diversification is a prominent feature of household portfolios, its causes are not
well understood.12 Therefore, instead of microfounding why some households diversify
more than others, we take a shortcut and assume each agent is endowed with an exogenous
level of idiosyncratic return risk Z8, which is determined by the type of the agent. We
then model the idiosyncratic component, [8,C+1, as follows:

[8,C+1
8.8.3.∼ N

(
−
f2
8A

2
, f2

8A

)
where f8A = fAZ8. The term fA denotes the standard deviation of the systematic part
of the log return, and the individual (type-specific) parameter Z8 governs the share of

12Possible explanations include differences across individuals in terms of preferences, financial illiteracy,
overconfidence and reliance on private equity. See Chapter 4.2 in Guiso and Sodini (2013) for a survey of
the related empirical and theoretical literature.
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idiosyncratic risk in total portfolio volatility.
With this modeling choice, rather than having access to the same risky asset, each

individual rationally invests in her own risky asset, which has identical expected excess
return as the market, but additional type-specific idiosyncratic risk. While guaranteeing
that idiosyncratic risk is not priced, this strategy captures – in line with the empirical
findings in Calvet et al. (2007) – that agents worse at diversifying will, everything
else equal, optimally choose a lower risky share and vice versa. In other words, this
specification captures in reduced form that agents have a heterogeneous ability or desire
to diversify, which they take as given when optimally deciding how to allocate their
wealth.

Labor income. Individual log earnings, H8,C , are the sum of an aggregate component,
FC , and two idiosyncratic components, one persistent, I8,C , and one transitory, a8,C :

H8,C = FC + I8,C + a8,C .

The aggregate component follows a random walk with drift, driven by shocks to the
market return through a parameter _AF:

FC = 6 + FC−1 + _AFA1,C + qC
where qC

8.8.3.∼ N
(
0, f2

q

)
.

The persistent component is an AR(1) process:

I8,C = dI8,C−1 + Y8,C
with innovations drawn from a mixture of Normals:

Y8,C =


Y
8,C

8.8.3.∼ N
(
`
Y,C
, f2

Y

)
w.p. ?Y

Y8,C
8.8.3.∼ N

(
`Y,C , f

2
Y

)
w.p. 1 − ?Y

.

Without loss of generality, we interpret ?Y as the probability of tail events and `
Y,C
, f

Y,C

the expected value and standard deviation of persistent income shocks during tail events,
respectively. A similar interpretation holds for the parameters governing the distribution
of normal events. To match the cyclicality of the skewness of labor income shocks, `

Y,C

is defined as:
`
Y,C
= `Y + _YF (FC − FC−1).
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Thus, tail events imply on average higher persistent shocks during expansions and vice
versa during recessions. In addition, since these shocks have zero mean, it must hold:

?Y`
Y,C
+ (1 − ?Y)`Y,C = 0.

Finally, the transitory shocks follow a Normal distribution:

a8,C
8.8.3.∼ N

(
0, f2

a

)
.

The framework for earnings and returns shares common features with Catherine (2021).
As discussed in detail in his paper, including countercyclical income risk through cyclical
skewness in the distribution of individual income shocks enables to obtain realistic
portfolio choices over the life-cycle. Intuitively, if adverse income shocks occur with
greater probability when the stock market crashes, agents with relatively high human
capital – the young and the poor – will be more cautious when investing in risky financial
instruments. We retain this feature in our framework to examine whether a mechanism
allowing to match portfolio choices over age can also produce realistic risk-taking patterns
over the wealth distribution. However, we also deviate from his setup in several ways.
First, we use these stochastic processes in an infinite horizon rather than a life-cycle
model. Second, as explained above, we add to the return of the risky asset an idiosyncratic
component, [8,C , to capture differences in idiosyncratic return risk. Third, to enable tight
identification in Swedish data via reducing the number of free parameters, some model
elements were simplified, as detailed in Appendix C. These modifications do not change
the main implications of the framework.

Safety net and taxes. In order not to overestimate the importance of persistent negative
shocks, we introduce a safety net program that replicates in a parsimonious way the main
characteristics of the Swedish social assistance system. The latter has been in place since
the 1950s, and its main purpose is to provide a subsistence level of income to people in
need.13 Expressing such subsistence level as a fraction 1rate of the aggregate income, we
model the total benefits received by individual 8 in period C, 18,C , as follows:

18,C = max
{
0, 1rate · exp(FC) − exp(H8,C)

}
.

13We refer the interested reader to Bastani and Lundberg (2017) for a more detailed description of the
Swedish social assistance system.
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Individuals pay three separate taxes in the model: a tax on labor income, capital
income and wealth. For each tax, we assume that the same tax rate is applied to all
individuals. We label such rate glabor for labor income, gcapinc for capital income and
gwealth for wealth.

The optimization problem. At the beginning of each period C, an individual enters
with a given cash-on-hand 08,C , persistent income I8,C and aggregate income FC . She
then chooses how much to consume in the current period, 28,C , and how much to save
through the risky asset, :8,C , and through the safe asset, 38,C . Conditional on investing in
the risky asset – indicated by �8,C , a dummy equal to one if the individual participates –
she pays the fixed participation cost 5 . Let \8 := (X8, W8, k8, Z8) denote the collection of
individual-specific parameters, Ξ8,C := (08,C , I8,C , FC ; \8) the state, ' 5 := exp(A 5 ) the gross
risk free return and '8,C+1 := exp(A8,C+1) the gross risky return. Then, the maximization
problem of agent 8 is:

+ (Ξ8,C) = max
28,C ,:8,C ,38,C

{
(1 − X8)21−k8

8,C
+ X8

(
EC

[
+ (Ξ8,C+1)1−W8

] ) 1−k8
1−W8

} 1
1−k8

subject to

08,C = 28,C + :8,C + 38,C + �8,C 5 · exp(FC)

08,C+1 = (1 − gwealth) (:8,C + 38,C) + (1 − gcapinc)
[
(' 5 − 1)38,C + ('8,C+1 − 1):8,C

]
+

+
(
exp(H8,C+1) + 18,C+1

)
(1 − glabor)

:8,C ≥ 0

38,C ≥ 3̄ · exp(FC).

The last two inequalities capture that agents cannot short-sell the risky asset, and that
the participation cost and the borrowing limit on the safe asset vary over time through
the dependence on the aggregate part of labor income FC .14 We describe in detail in
Appendix B how we solve the model numerically.

14This assumption makes the value function homogeneous with respect to FC , which allows us to reduce the
dimensionality of the problem by one.
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3 Estimation

One of the contributions of this paper is to structurally estimate the model presented
in the previous section. In doing so, we target characteristics of aggregate income and
returns, individual earnings, and portfolio choice patterns over the wealth distribution
in Swedish data. In particular, we show that matching portfolio choice schedules over
wealth is crucial to estimate the individual specific parameters included in \8.

The estimation procedure follows a sequential structure. First, we estimate the
processes governing aggregate income, returns, and individual earnings. Taking the
results of the first step as given, we then estimate the participation cost, the borrowing
limit, the share of each of the two types in the population and the individual-specific
parameters in \8.

Each estimation step relies on a Simulated Method of Moments (SMM) routine.
The SMM estimate is a vector of parameters that minimizes deviations between moments
in the data and their respective counterparts generated by the model. Our estimation
algorithm includes a global and a local stage and it is similar to the one outlined in Arnoud
et al. (2019). In the global stage, we generate a large Sobol sequence of parameter vectors
and compute the objective function for every vector of the sequence. In the local stage,
we take the best candidates from the global stage as initial starting points to perform a
local optimization for each of them using a local search algorithm (Nelder-Mead), again
minimizing the objective function.

Estimating the income and return processes requires simulating them repeatedly.
We closely match key moments in Swedish data and find that the effects of cyclical
skewness are comparable to those found by Catherine (2021). Instead, the estimation
of the remaining parameters requires solving the individual optimization problem and
computing the resulting stationary distribution repeatedly. Since the main contribution
of our estimation exercise is to obtain structural estimates of the parameters governing
ex-ante individual heterogeneity, we outline below the details of the latter procedure. We
report the full estimation results for the income and return processes in Appendix C, and
refer the interested reader to Appendices A and C for, respectively, a description of the
data and additional technical details related to the estimation technique and our mapping
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between the model variables and the data.
To ensure that the estimation of preference and idiosyncratic return risk parameters

and of their heterogeneity from the observed portfolio choices over the wealth distribution
remains feasible and identified, we proceed as follows. First, we assume that the economy
is populated by two types of individuals. As shown later, two types turn out to be
sufficient to match all targeted moments well. Second, although the outlined model
features heterogeneity in patience (X), risk aversion (W), inverse EIS (k), and idiosyncratic
return risk (Z) simultaneously, in all the results reported from here onwards, we set k
to unity for both types unless otherwise stated. Indeed, while the different role of k
from that of risk aversion W is captured through the adoption of Epstein-Zin preferences,
joint identification of EIS and impatience is problematic in a model without liquidity
differences across assets, as highlighted by Aguiar et al. (2024).15 Lacking this dimension
of heterogeneity in our model, we set k to one and investigate the sensitivity of our
results with respect to different values of this parameter in Appendix F.2. With the EIS
fixed at unity, the Epstein-Zin preferences allow us to isolate the role of heterogeneity in
risk aversion, which turns out sufficient to explain the targets.

Summing up, we estimate a total of nine parameters: the preference parameters X
and W, the idiosyncratic return risk parameter Z (all by type), the share of individuals of
each type in the population, the participation cost 5 and the borrowing limit 3̄.

Targets. Bach et al. (2020) report key portfolio choice characteristics over the Swedish
wealth distribution, including (unconditional) expected excess returns, participation in
risky assets and the share of idiosyncratic return risk, where the latter is defined as
the fraction of total portfolio variance not explained by systematic risk factors. These
portfolio choice patterns over the wealth distribution – covering both the intensive and
extensive margin of the investment allocation choice – form the basis of our estimation
targets.

While a detailed description can be found in their paper, for our purposes it is worth
reminding that the authors use administrative sources covering the wealth holdings all

15The main idea behind identification in their framework is that low EIS agents care more about consumption
smoothing and, as a consequence, their saving decision is tilted more towards liquid assets.
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Swedish residents for the period 2000-2007, and that such holdings consist of cash,
pension wealth, financial securities (including funds, stocks, derivatives, and bonds),
private equity, real estate wealth and debt. The measure of wealth we will refer to
throughout the paper is net wealth, defined – as they do – as the sum of all wealth holdings
within the household minus debt.16

We rely on the micro data in Bach et al. (2020) to compute portfolio choice
characteristics applicable to our model setting. When deciding how to allocate their
savings – our measure of wealth in the model – individuals choose between a safe and
a single composite risky asset. To map expected excess returns, participation and the
share of idiosyncratic risk by asset type in the data into those of a composite risky asset,
we proceed as follows. First, for every household we compute their wealth holdings
in financial wealth, private equity and commercial real estate. Second, we classify the
different assets as safe and risky: cash and money market funds belong to the former
group, while all other securities, private equity and commercial real estate to the latter.
As in Bach et al. (2020), the expected excess return and share of idiosyncratic variance
are then computed for each household by weighting the asset-specific expected excess
return and risk by the portfolio share of that asset. Participation is, instead, a binary
variable equal to unity if the household holds any risky asset according to the above
definition. Finally, an average value of these three quantities for different wealth groups is
obtained by running a regression including indicator variables for the desired net wealth
bins.

For the main estimation, we classify pension wealth and residential real estate as
neither safe nor risky, and disregard these assets for the computation of expected returns,
participation and idiosyncratic risk (but not for the relative wealth rank). The reason
for this choice is that, as the aim is inferring households’ preference parameters from
observed portfolio choices, it is best to remain agnostic towards asset classes where
the observed risky share is most likely determined by other factors. In particular, the

16The individual earnings process is instead estimated using individual-level data for males. While this is
mainly due to data availability constraints, Busch et al. (2022) find that households do not seem to be able
to use their spouse’s earnings to insure against the higher downside risk in recessions, essentially because
they both face the same labor market conditions.
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asset composition of pension accounts is heavily affected by government regulations
and nudging, while the housing share of one’s portfolio might be more indicative of
preferences in terms of where to live and frictions in the rental market than optimal
exposure to real estate price fluctuations. Computing portfolio schedules over total
wealth without these two assets implies that the risky part in each of them is equal to the
one found for the restricted portfolio including only financial wealth, private equity and
commercial real estate. We consider pension wealth and residential real estate as safe
assets in Appendix F.17

Figure 1 displays the resulting schedules of the expected excess returns, participation
and share of idiosyncratic risk over the wealth distribution. As in Bach et al. (2020),
wealthier households are more likely to hold risky assets, invest a higher share of their
wealth in those risky assets and load their portfolios with more idiosyncratic risk than
poorer households. These three schedules (by wealth quantile) constitute our estimation
targets, together with the ratio of aggregate wealth to income and the share of households
with negative wealth – which in Sweden are, respectively, equal to four (as reported
by Bach et al., 2018) and approximately 8.3% – for a total of 41 moments. We match
the wealth-to-income ratio to ensure that the relative importance of labor income and
wealth is comparable to that in the data. The share of households with negative wealth
pins down the borrowing limit. We postpone the discussion of the identification of the
preference parameters and the participation cost from the portfolio choice moments to
Section 3.1 when inspecting the model mechanisms.

Externally calibrated parameters. Before presenting the estimation results, we de-
scribe how we choose the remaining parameters needed to solve the model. We set 1rate
equal to the ratio of the subsistence income threshold and aggregate income.18 Between
2000 and 2007, this ratio averaged to 0.184. In the same period, capital income was taxed

17Quantifying the exact share of risky and underdiversified pension and residential real estate wealth is an
empirical task entailing phenomenal data requirements, which we leave to future research.

18We use monthly subsistence income thresholds for single individuals without children and annualize them.
Tables with the subsistence levels can be found on the website of the Swedish National Board of Health
and Welfare (Socialstyrelsen): https://www.socialstyrelsen.se/kunskapsstod-och-regler/
omraden/ekonomiskt-bistand/riksnormen.
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at a flat rate of 30 percent and wealth was taxed at 1.5 percent (Henrekson and Stenkula,
2015). Thus, we set gcapinc and gwealth equal to these two numbers, respectively. The
average labor income tax – computed as the sum of the average municipal and central
rates reported in Bastani and Lundberg (2017) – was about 32 percent, which is then the
number we use for glabor. The risk-free rate, A 5 , is set to be equal to the average yearly real
yield of Swedish Treasury bills, which is 2.9 percent between 1984 and 2016. Following
Catherine (2021), the portfolio management cost < is set to 1 percent. Table 1 lists all
externally calibrated parameters. One period in the model corresponds to one year.

Parameter Description Value Source
1rate subsistence income rate 0.184 computed from Socialstyrelsen and Hammar et al. (2022) data
gcapinc capital income tax 0.3 Henrekson and Stenkula (2015)
gwealth wealth tax 0.015 Henrekson and Stenkula (2015)
glabor labor income tax 0.32 Bastani and Lundberg (2017)
A 5 risk-free rate 0.029 computed from Sodini et al. (2020) data
< management cost 0.01 Catherine (2021)

Table 1: Externally calibrated parameters.

Estimation results. The estimated parameters, reported in Table 2, imply a stark
separation between the two types of agents. Type-two agents discount the future less
strongly than type-one agents (X of 0.966 vs. 0.924), are less risk averse (W of 2.671
vs. 9.891), and feature a lower degree of idiosyncratic return risk. In particular, the
estimated values for portfolio diversification imply that the share of idiosyncratic variance
in total return variance for type-two agents is 46 percent (Z = 0.825), whereas it is 27
percent for type-one agents (Z = 0.543). It is noteworthy that while the discount factor
and risk aversion of type-two agents are closer to those usually adopted in the macro
literature on wealth inequality, type-one agents are characterized by higher values for
these two parameters, a combination more often used in the household finance literature.
Interestingly, only a relatively small fraction – approximately 10 percent – of type-two
agents (but, as we will see below, holding most of the wealth in the economy) is needed
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for the model economy to replicate all targets.19

Estimated parameters
Type 1 Type 2

X W Z X W Z Share of Type 1 5 3̄

Estimate 0.924 9.891 0.543 0.966 2.671 0.825 0.901 0.001 −0.835

Moments (excl. portfolio choice targets)
Wealth/Income Share with neg. wealth

Data 4.000 0.083
Model 3.996 0.083

Table 2: Estimated model parameters. We solve the model assuming that there are only two types of individuals and setting
inverse EIS (k) equal to one. The estimation procedure targets the aggregate wealth to income ratio, the share of households with
negative wealth and the schedules of expected excess returns, participation and share of idiosyncratic return variance over the wealth
distribution computed from Swedish administrative data and reported in Figure 1.

Finally, the stock market participation cost 5 is estimated at 0.001. Using the
average of our measure of aggregate income over the period 2000-2007, this corresponds
to about 263 SEK in 2021 terms (about $30) per year.

Figure 1 shows the model fit of the targeted portfolio choice moments. Expected
excess returns, participation and the share of idiosyncratic variance are increasing over
the wealth distribution, quantitatively in line with the data. The following section inspects
how the model (henceforth labeled benchmark) matches the portfolio choice schedules
so well for the estimated parameters.

19The lower risk aversion and idiosyncratic return risk and the higher patience found for type-two agents
resemble characteristics of entrepreneurs, which is a complementary explanation for the observed portfolio
choice patterns (Cagetti and De Nardi, 2006; De Nardi and Fella, 2017). However, the evidence provided
by Bach et al. (2020) shows that expected excess returns and the share of idiosyncratic variance are also
increasing in wealth when considering only financial wealth portfolios, and that even among households at
the top 1%-0.5% of the wealth distribution, the majority does not own any privately listed firms. This
suggests that the portfolio choice patterns found in the data – Figure 1 shows that excess returns and
idiosyncratic risk increase over the whole range of the wealth distribution – cannot be fully explained by
the narrative of entrepreneurs investing in their own business.
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Figure 1: Fit of the estimated model. The figure shows the schedules of expected excess returns, participation and the share of
idiosyncratic return variance over the wealth distribution from the model and their data equivalents computed from the Swedish
administrative data used by Bach et al. (2020). Safe assets include cash and money market funds. Risky assets include all other
securities, private equity and commercial real estate. The risky share within pension wealth and residential real estate is assumed to
be the same as the one found for the restricted portfolio including only financial wealth, private equity and commercial real estate.
The share of idiosyncratic return variance is computed on participants.
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3.1 Inspecting the mechanism

In this section, we describe in detail how the two key ingredients in our model
– cyclical skewness of labor income shocks and ex-ante heterogeneity in preferences
and idiosyncratic return risk – help to explain the schedules of expected excess returns,
participation and the share of idiosyncratic variance presented in Figure 1.

The role of cyclical skewness can be understood by comparing the policy functions
for the risky share over cash-on-hand in the estimated model against a model where tail
shocks in the persistent component of earnings are shut off.20 As shown in the left panel
of Figure 2, in contrast to the benchmark specification, the risky share in the model
without tail risk is decreasing.

Figure 2: Key model mechanisms. The left panel compares the risky share in the benchmark model and in a model without tail
risk in earnings shocks (i.e., we set `Y = _YF = 0 and the standard deviation of the persistent part of earnings shocks equal to the
unconditional standard deviation of the mixture of Normals). The right panel shows the share of type-two individuals in a given
wealth bracket.

There are two well known factors (see, e.g., Campbell and Viceira, 2002) shaping
the optimal choice of the risky share: the human capital-wealth ratio and the extent to
which human capital has bond-like properties (i.e., should human capital be considered

20To facilitate the comparison we use a log scale for the x-axis and we solve both models with the parameters
estimated in the previous section, except for the borrowing limit, which we set to zero. Furthermore, in the
model without cyclical skewness we set `Y = _YF = 0 and the standard deviation of the persistent part of
earnings shocks equal to the unconditional standard deviation of the mixture of Normals governing Y8,C .
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more similar to a safe or risky asset). This follows from the fact that optimal consumption
is a function of such ratio, so its level and riskiness matter for consumption smoothing.
In a model where labor income is bond-like – such as the version of our framework
without tail risk or the main specification in Cocco et al. (2005) – asset poor agents
whose total wealth mainly consists of human capital invest fully in the risky asset as
shown in the left panel of Figure 2. As first shown by Catherine (2021) in the context of a
life-cycle model, cyclical skewness in labor income shocks – that is, a higher probability
of receiving negative labor income shocks when the aggregate return component of the
risky asset is low and vice versa – overturns this result. As labor income already features
properties of the risky asset, young agents shy away from investing in the latter. Applied
to our specification, this mechanism refrains asset poor agents from investing in the risky
asset and makes them raise their risky share only gradually with wealth, which delivers
a positive relation between these two quantities. Nevertheless, this channel alone has
difficulties matching the increase in the empirical risk-taking patterns over the whole
wealth distribution. Intuitively, as agents accumulate wealth to self-insure against shocks,
their human capital-to-wealth ratio declines and the properties of their earnings process
become irrelevant for their portfolio choice. Consequently – as clearly shown in the
left panel of Figure 2 – in both models the risky share converges to Merton’s constant
(Merton, 1969).

Turning to ex-ante heterogeneity in preferences and idiosyncratic return risk across
individuals, this feature is crucial to match portfolio choices at the top of the distribution.
Indeed, as shown in the right panel of Figure 2, the lower degree of risk aversion and
higher patience of type-two agents induce them to optimally choose higher savings and a
higher risky share, which, as a result, endogenously lead them to the top of the wealth
distribution. As the share of this type of agents increases gradually until the very top of
the distribution – where these individuals constitute the vast majority of the population –
the resulting compositional effects deliver increasing excess returns and participation
even at the top of the wealth distribution.21 Additionally, as these agents are characterized

21The reason why the excess return is slightly lower for the top 1% compared to the P97.5-P99 group is that
when type-two individuals almost fully populate a certain part of the distribution, the compositional effect
on the average risky share is weaker.
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also by higher idiosyncratic risk, this mechanism also allows us to match the empirical
schedule of the share of idiosyncratic return variance.

Finally, it is worth noting that the high-risk aversion of type-one individuals
combined with the effect of countercyclical income risk implies that even a small
value of the participation cost has a sufficient deterring effect on participation. As a
result, the estimated participation cost is smaller than other values in the literature (e.g.,
Vissing-Jorgensen, 2003).

4 Implications for the wealth distribution

The endogenous sorting of the two types suggests that portfolio choice heterogeneity
has implications for the wealth distribution. In this section, therefore, we assess how
well our benchmark model matches wealth inequality and mobility in the data. To
confirm that the model delivers reasonable predictions for other policy relevant measures,
we also show that our framework generates realistic marginal propensities to consume
(MPCs) and invest (MPIs). Importantly, none of these quantities has been targeted in the
estimation.

Wealth inequality. Table 3 presents the model fit of the wealth distribution, contrasting
the wealth held by different groups in the model and data. We compare our results with
the corresponding values in the Swedish administrative data averaged over the period
2000-2007.22

The model closely matches overall wealth inequality, as reflected by the Gini
coefficient (0.69 vs. 0.71 in the data) and the shares of wealth held by different groups.
Remarkably, the fit is very good even at the top 1%, where standard models usually do
not deliver values as high as in the data. We emphasize that although our model features

22The wealth measure we use – which is the same as that adopted by Bach et al. (2020) – includes an imputed
value for total pension wealth. Without this component, wealth inequality would be higher. This is in line
with the findings in Catherine et al. (Forthcoming), where the authors show that properly accounting for
social security wealth delivers much smaller changes in the top wealth shares over the last three decades in
the United States. We think that using a measure of wealth including pension holdings is more appropriate
to compare the output of an infinite horizon model with the data.
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preference heterogeneity, the parameter values for the more patient type are standard in
the macroeconomics literature.

Model Data
Share held by (%): Benchmark One type Only X No idio. ret. Sweden (2000-2007)

Q1 0.1 0.3 0.1 0.2 -1.1
Q2 4.6 6.6 2.5 5.8 2.8
Q3 8.8 12.8 5.0 11.2 8.7
Q4 15.8 22.3 10.7 19.4 19.4
Q5 70.6 58.0 81.7 63.4 70.2

90-95 % 11.9 12.8 19.5 12.1 13.4
95-99 % 22.5 16.4 29.5 17.4 17.9
Top 1 % 22.5 11.0 16.7 17.8 21.3

Wealth Gini 0.69 0.57 0.76 0.62 0.71
Table 3: Wealth inequality. The table reports the share of wealth held by households between different quantiles of the wealth
distribution and the Gini coefficient. “One type” indicates the model with one type of agents, i.e., no heterogeneity in preference
parameters and idiosyncratic return risk. “Only X” the model with two types differing in X but not in W and Z . “No idio. ret.”
the model without idiosyncratic risk in returns in which we set Z equal to zero for both types. The last column shows the data
equivalents computed in the Swedish administrative data compiled by Bach et al. (2020) – averaged over the 2000-2007 period.

Wealth mobility. Table 4 reports the share of agents transitioning across different
wealth groups over a period of twenty-five years. We compare these figures with the
numbers from Table 3 in Benhabib et al. (2019), which report the probability that a child
belongs to a wealth quintile given the wealth quintile of the parent, computed using PSID
data.

Our model compares relatively well to the data, with transition probabilities differing
only by a few percentage points. Appendix Table 3 in Bach et al. (2020) reports wealth
mobility in Swedish registry data, but focuses on top wealth mobility and spans only a
period of seven years. Nevertheless, we also compare our model performance against
these numbers in Appendix E and find a good match.
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Wealth rank in 25 years
Wealth rank today 0%-20% 20%-40% 40%-60% 60%-80% 80%-100%
0%-20% 0.30 0.23 0.20 0.16 0.11

[0.36] [0.29] [0.16] [0.12] [0.07]
20%-40% 0.24 0.23 0.21 0.18 0.13

[0.26] [0.24] [0.24] [0.15] [0.12]
40%-60% 0.21 0.22 0.22 0.20 0.15

[0.16] [0.21] [0.25] [0.24] [0.15]
60%-80% 0.17 0.20 0.22 0.22 0.19

[0.15] [0.13] [0.20] [0.26] [0.26]
80%-100% 0.08 0.12 0.17 0.22 0.41

[0.11] [0.16] [0.14] [0.24] [0.36]
Table 4: Wealth mobility. The table shows the share of agents moving across wealth quintiles of the wealth distribution over a
period of 25 years under our benchmark specification. The numbers in square parentheses are taken from Table 3 in Benhabib et
al. (2019), where the authors report parent-child intergenerational wealth mobility figures from Table 2 in Charles and Hurst (2003)
computed with PSID data. Rows might not sum exactly to one due to rounding.

Marginal propensities to consume and invest. Figure 3 reports the yearly MPCs
over the wealth distribution in our benchmark specification, unveiling a clear decreasing
relationship between these two quantities. The average MPC in the model is 0.13, but
there is substantial heterogeneity across the distribution, ranging from 0.19 for the poorest
wealth group to 0.05 for the top 1%.

Figure 3: Marginal propensities to consume and to invest. The figure shows the schedules of the marginal propensities to
consume, to invest in the safe asset and to invest in the risky asset over the wealth distribution obtained with our benchmark model.
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While the presence of more patient type-two individuals mainly at the top of the
distribution helps to obtain – in line with the theoretical findings in Kaplan et al. (2018)
and Carroll et al. (2017) – a decreasing schedule of MPCs over wealth, our average
estimate places itself in the lower end region of the values found in the literature.23 The
key reason behind this result is that in our model the MPCs of agents in the left part of the
distribution are relatively low because assets are perfectly liquid. Despite this, we believe
that the overall match is satisfying, considering our relatively parsimonious framework.

We report two other interesting patterns in Figure 3, namely the marginal propensi-
ties to invest in risky and safe assets over the wealth distribution. The MPI in the safe
asset is always larger than that of the risky asset, and it is overall decreasing over the
distribution (vice versa for the risky asset). This result is again due to the concentration
of more patient and less risk averse type-two individuals at the top.

Taking stock, the previous paragraphs show that our benchmark specification generates
wealth inequality, mobility and marginal propensities to consume and invest that match
the data relatively well. We interpret the good fit of all these moments (despite not
having targeted any of them in the estimation) as a validation of our model mechanisms.
While intuition suggests that portfolio heterogeneity matters for wealth inequality, it is
not obvious ex-ante that the key features of our model would quantitatively generate a
good match also along the other dimensions just mentioned. In the next section, we
investigate in detail the contribution of the different model components in jointly fitting
these quantities.

5 Quantifying the contribution of model components

The key features of our framework are ex-ante heterogeneity across individuals
in preference parameters and idiosyncratic return risk, endogenous portfolio choice

23Table 1 in Carroll et al. (2017) summarizes empirical estimates of yearly MPCs. Even though there is large
heterogeneity, the authors claim that the majority of estimates is between 0.2 and 0.6. On the modeling
side, Kaplan et al. (2018) find an average yearly MPC of around 0.3, and Carroll et al. (2017) a range of
values roughly between 0.2 and 0.4 depending on the model specification considered.
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between a safe and risky asset and cyclical skewness of labor income shocks. In this
section, we quantify the contribution of these elements by estimating counterfactual
model economies in which we turn off these additions one at a time. Specifically, we
consider a model in which preference and idiosyncratic return risk parameters are the
same across agents, a model in which the two types differ only in their discount factor
and a model without idiosyncratic risk in returns. We relegate to Appendix D additional
results for other counterfactual economies in which, respectively, the two types differ
only in their risk aversion, cyclical skewness in labor income risk is turned off or portfolio
choices are hard-wired.

5.1 One type of agents

One key component of the model is the rich ex-ante heterogeneity in agents’
preferences and idiosyncratic return risk. In the following, we show that this feature is
crucial in explaining the targeted moments of portfolio choice over the wealth distribution
shown in Figure 1. To this end, we assume that there is just one type of agents, and
re-estimate X, W, Z , the participation cost 5 and the borrowing limit 3̄, while targeting the
same moments as for the benchmark model. One can interpret this exercise as quantifying
the importance of type dependence (Gabaix et al., 2016) for our main results.

Type 1 Type 2
Model X W Z X W Z Share of Type 1 5 3̄

Benchmark 0.924 9.891 0.543 0.966 2.671 0.825 0.901 0.001 −0.835
One type 0.950 9.229 0.613 1.0 0.006 −1.118
Only X 0.884 7.629 0.615 0.981 0.859 0.000 −0.287
No idio. ret. 0.939 9.551 0.947 2.310 0.887 0.005 −0.891

Table 5: Estimated model parameters, benchmark model vs. alternative specifications. We solve each model setting inverse
EIS (k) equal to one. “One type” indicates the model with one type of agents, i.e., no heterogeneity in preference parameters and
idiosyncratic return risk. “Only X” the model with two types differing in X but not in W and Z . “No idio. ret.” the model without
idiosyncratic risk in returns in which we set Z equal to zero for both types.

Table 5 reports the parameter estimates for this case. With only one type, the
parameter values are in between the numbers obtained in the benchmark case, as the
algorithm faces the tradeoff between type-one parameter values to match portfolio choices
at the bottom and type-two parameter values to match portfolio choices at the top of the
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distribution. This is clearly visible from the top panel in Figure 4, which compares the
expected excess returns over the wealth distribution in the benchmark model with this
alternative specification.24

The reason why the model cannot match the empirical patterns with only one type
is the lack of compositional effects at the top of the wealth distribution, as described in
Section 3.1. While cyclical skewness – in addition to a higher fixed participation cost –
still generates an increasing risky share in the lower part of the distribution, the absence
of type-two agents and the ensuing lack of compositional effects prevent the model from
generating the same pattern at the top. As a consequence, the risky share plateaus before
converging back to Merton’s constant. Furthermore, lacking heterogeneity in Z , the share
of idiosyncratic variance is identical for all agents and hence the schedule of this quantity
over wealth is flat.

In addition to the effects on portfolio choice, removing preference heterogeneity has
further implications. As shown by Krusell and Smith (1998), heterogeneity in patience
across individuals increases wealth inequality, since more patient individuals with higher
saving rates concentrate at the top of the wealth distribution in the long run. Combined
with the lower savings and capital gains implied by the lack of less risk averse and less
diversified wealthy agents, the wealth distribution resulting from the model with only one
type undershoots the amount of wealth held at the top and overshoots it at the bottom,
as shown in Table 3. As a result, the Gini coefficient declines from 0.69 to 0.57. The
absence of type-two individuals also does not allow the model to generate an increasing
marginal propensity to invest in risky assets at the top, and generates too much wealth
mobility among the rich, as shown in the Appendix in Figures E.2 and E.4, respectively.

24Figure E.1 reports the schedule of participation over wealth for all counterfactuals. The wealth-to-income
ratio and the share of agents with negative wealth are almost always perfectly matched when re-estimating
the model under all the alternative specifications considered.
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One type

Only X

No idio. ret.

Figure 4: Fit of the estimated model, benchmark vs. alternative specifications. The figure shows the schedules of expected
excess returns over the wealth distribution in the benchmark model, the different alternative specifications, and their data equivalents
computed in the Swedish administrative data used by Bach et al. (2020). The top panel reports the results for the model with one
type of agents, i.e., no heterogeneity in preference parameters and idiosyncratic return risk. The middle panel for the model with
two types differing only in X. The bottom panel for the model without idiosyncratic risk in returns in which we set Z equal to zero
for both types.
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5.2 Heterogeneity only in patience

To isolate the contribution of heterogeneity in the discount factor, X, we re-estimate
the model, allowing for ex-ante heterogeneity only in this parameter while targeting the
same moments as in the benchmark case.

The middle panel in Figure 4 reports the fit of the schedules of expected excess
returns, while the effect on the wealth distribution and the estimated parameters are
presented in Tables 3 and 5 under the label “Only X”. While the estimated risk aversion
and level of idiosyncratic risk are in between the two values obtained in the benchmark
specification – as in the case with only one type of agents – the discount factors are more
extreme than in the benchmark, namely 0.884 for type-one and 0.981 for type-two. A low
discount factor implies both a low savings rate and low participation, so in theory this
setup can make the type more willing to invest into stocks concentrate on the top of the
wealth distribution. Indeed, as shown by Figure 4, this alternative specification delivers
very similar schedules to the benchmark until the P90-P95 group. However, it does a poor
job in matching the expected excess returns data at the top: after the wealth group just
mentioned, the predicted schedule is counterfactually decreasing in wealth. Even though
this alternative specification still predicts a strong separation between impatient and
patient individuals, with the latter populating mostly the top of the wealth distribution,
the lack of lower risk aversion for wealthy individuals prevents the model from generating
an increasing excess return schedule until the top.

Looking at wealth inequality in Table 3, the results resemble the findings in Krusell
and Smith (1998): due to the resulting powerful separation between the two types, the
overall Gini coefficient increases – even surpassing the empirical value from Swedish
data – but the model underpredicts the share of wealth held at the very top 1%. This
highlights the importance of matching the portfolio allocation decisions of the very rich.
Figure E.2 displays that heterogeneity in the discount factor also allows to generate
a decreasing MPC in wealth, in line with Carroll et al. (2017), but not an increasing
MPI in the risky asset for the same reasons as those outlined for the model with only
one type. Another important dimension where the “Only X” does not perform well is
wealth mobility. As pointed out by Benhabib et al. (2019), idiosyncratic return risk is an

31



important contributor of top wealth mobility: the fact that in this specification patient and
impatient individuals face the same idiosyncratic return risk combined with the higher
discount factor of the former type than in the benchmark delivers too low mobility in the
right tail of the distribution, as Figures E.3 and E.4 clearly show.

5.3 No idiosyncratic risk in returns

For the purpose of understanding the role of idiosyncratic return risk in shaping
the wealth distribution, we evaluate the performance of another counterfactual model
in which we eliminate idiosyncratic returns by setting Z equal to zero.25 As depicted
in the bottom panel of Figure 4, the model-generated policies match the data almost as
accurately as the benchmark.

Despite doing a good job in matching the empirical schedule of expected excess
returns, this counterfactual specification does not deliver an equally good result as the
benchmark model in terms of wealth inequality. As Table 3 shows, too little wealth is
concentrated at the top of the distribution compared to the data: the share of wealth held
by the top 1% drops from 22.5% to 17.8% and the Gini coefficient from 0.69 to 0.62.
Besides idiosyncratic returns directly generating dispersion in wealth, one reason for this
result is that – as shown in Table 5 – when not constrained to match the higher share of
idiosyncratic risk in the right tail of the distribution, the algorithm requires a less stark
type-separation in the estimated discount factors. As a consequence of this, while our
results qualitatively line up with the findings in Hubmer et al. (2021) – who document a
limited impact of idiosyncratic return risk, mainly clustered at the top – compared to
them, the effect we find is quantitatively larger. Since the wealth distribution implied
by the estimated parameters of this counterfactual is more equal than in the benchmark
economy, we also find a limited effect on wealth mobility, as shown in Figures E.3 and
E.4.26

25As there is no idiosyncratic return risk, in addition to the wealth-to-income ratio and the share of agents
with negative wealth, in this case we only target the schedules of expected excess returns and participation
over the wealth distribution.

26Atkeson and Irie (2022) show that the crucial determinant for high mobility at the top is the higher
idiosyncratic return risk in the portfolios of wealthy individuals. However, their statement is conditional
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An important conclusion from this counterfactual is that a good fit of the portfolio
choice patterns does not necessarily imply an equally good fit of the wealth distribution.

6 Dynamic implications

Understanding the response of wealth inequality to shocks is crucial for the design
of redistributive policies. Since our estimated model captures well key metrics relevant
for the transmission of shocks – i.e., the shape of the wealth distribution, wealth mobility
and marginal propensities to consume and invest – we present below the response of the
share of wealth held by the top 10% and top 1% to an aggregate return shock in our
benchmark specification and contrast it to counterfactual models.

We implement the shock as a one-time, unexpected (“MIT”) ten percentage points
increase in A2, the component of the aggregate stock market return not correlated with
the aggregate component of individuals’ labor income.27 We refer the interested reader
to Appendix B for the technical details of the exercise.

Figure 5 presents the results of this exercise. Considering first our benchmark
economy, the solid lines in the picture show that the additional capital gains substantially
boost inequality, as agents in the right tail of the distribution have a larger share of their
wealth invested in the risky asset. The magnitude of the initial responses of about 0.55
and 0.2 percentage points can be compared to the theoretical maximal responses, obtained
by assuming that the top 10% (or 1%) of the population holds only stocks while the rest
only bonds. Using the wealth distribution generated by our benchmark specification,
these upper bounds amount to 2.3 and 1.7 percentage points, respectively, implying
that the model produces approximately 23.7% and 11.7% of these figures. The graph

on keeping top wealth inequality constant.
27While we acknowledge the advantages of general equilibrium, we think that most of our analysis is better
suited to a partial equilibrium framework. Matching portfolio choices over the wealth distribution is a
relevant exercise only if the joint distribution of idiosyncratic labor income shocks and stock market returns
is realistic, and producing the latter as a general equilibrium outcome is outside the scope of this paper.
For the given exercise, as A2 can be interpreted as an external shock to foreign stock markets, studying the
effect of an unexpected change in this variable allows us to mitigate concerns related to using a partial
equilibrium model to assess aggregate responses.
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also shows that the effect of the shock is overall very long lasting, as it takes more than
two hundred years for the economy to converge back to the steady state. The persistent
response is driven by type-two individuals, whose higher patience and propensity to
invest in non-safe holdings fosters additional savings and capital gains.

Figure 5: Response to an aggregate return shock, benchmark vs. alternative specifications. The figure shows the response of
the share of wealth held by the top 10% and 1% to a ten percentage point increase in A2. “One type” indicates the model with one
type of agents, i.e., no heterogeneity in preference parameters and idiosyncratic return risk. “Only X” the model with two types
differing in X but not in W and Z .

One of the key features of our benchmark model is the ability to generate realistic
portfolio choices and wealth concentration levels in line with the data. An interesting
exercise, therefore, is to compare the responses of wealth inequality obtained with two
counterfactual specifications that do not match well these two quantities, namely the
model with only one type of agents (“One type”) and the model with heterogeneity only
in discount factors (“Only X”).28 The first case is interesting because – as highlighted
in Section 5.1 – that counterfactual economy fails to match both portfolio choices and
inequality. Comparing it with the benchmark, therefore, allows us to understand the role
of achieving a good fit in these two dimensions at once. The “Only X” case, instead, allows
us to isolate the role of realistic portfolio choices, since that alternative specification
delivers high wealth inequality (even higher than in the benchmark) but fails to replicate

28We compare in Appendix D.3 the responses between the benchmark economy and the model with
hard-wired portfolio choices.
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the investment allocation decisions of the rich – as discussed in Section 5.2.
The responses obtained from these two alternative models are presented in Figure

5 (the dotted lines correspond to “One type” and the dashed ones to “Only X”). First,
compared to the benchmark, the share of wealth held by the top 10% increases much
less with heterogeneity only in patience (about 0.2 vs. 0.55 percentage points) and even
decreases in the specification with only one type of agents. Second, only the benchmark
model generates an increase in the share of wealth held by the top 1%, while both in the
“One type” and the “Only X” settings the response is small and negative on impact. In
both these counterfactuals, the risky share starts to decrease in wealth at lower quantiles
of the the wealth distribution (see Figure 4), so the reduced capital gains of the wealthiest
translate into lower inequality compared to the benchmark. In particular, in the case of
the “One type” specification the risky share is decreasing in wealth already from the
60th percentile of the wealth distribution, hence we detect a decrease in inequality with
both the top 10% and the top 1% measure. The “Only X” setting however, features a
better match of top inequality combined with a decreasing risky share only after the
90th percentile, which enables the model to achieve a more comparable response to the
benchmark for the top 10%. However, as at the top of the wealth distribution the portfolio
choice patterns are worse matched than in the benchmark, the inequality response in
the top 1% is even negative on impact. In addition, all counterfactual responses feature
a much lower persistence (despite the higher X estimated for type-two agents in “Only
X”), as in the benchmark specification the marginal propensity to invest in risky assets is
significantly higher for the rich, and thus the additional wealth keeps on generating high
returns.

Taking stock, both capturing the distribution of wealth and portfolio choices in the
economy is crucial for the sign, magnitude and persistence of the response of wealth
inequality to an aggregate return shock. Importantly, generating a high initial inequality
in a model is not sufficient to capture these effects, if household investment allocations
are not explained well.
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7 Conclusion

This paper introduces a macroeconomic angle to recent empirical findings in the
household finance literature by developing a quantitative theory that jointly explains key
features of the wealth distribution and portfolio choices. Beyond the endogenous decision
between a risky and a safe asset, two elements we add to a standard incomplete markets
model are cyclical skewness in labor income shocks and ex-ante heterogeneity across
individuals in terms of their discount factor, risk aversion and idiosyncratic return risk.
The former ingredient rationalizes the increasing relationship between the risky share
and wealth at the bottom of the wealth distribution. The latter extends this relationship
also to the right tail, where agents are well insured from income shocks. Owing in large
part to preference heterogeneity, the model also delivers a very good match of wealth
inequality – remarkably even at the very top – wealth mobility, and marginal propensities
to consume over the wealth distribution. To illustrate the importance of portfolio choices
for macroeconomic outcomes, we analyze how wealth concentration evolves following
an aggregate return shock. We find that counterfactual models not capturing the positive
relation between risk-taking and wealth imply a less persistent and weaker response in
inequality.

Given that our framework replicates well the joint distribution of wealth and
portfolio choices and its main characteristics, we see our model as a solid basis for further
extensions to address other interesting questions. For instance, while converting our
setting to a fully general equilibrium model is a challenging task as it requires explaining
the equity premium (Krusell and Smith, 1997), one could endogenize the risk-free rate as
in Hubmer et al. (2021). In turn, this would allow quantifying the impact of tax policies –
in the form of, for example, changes in wealth or capital income taxes – in a framework
where agents optimize both their consumption/saving and investment allocation decisions.
We leave these important questions to further research.
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OnlineAppendix for"PreferenceHeterogeneity andPortfolioChoices
over the Wealth Distribution"

A Data

Deflator. We transform variables into real terms using the Consumer Price Index (CPI) for Sweden
recovered from the OECD Economic Outlook No. 113 (OECD, 2023). We use 2021 as the base year.

Risk-free rate and stock market returns. We recover our measures of the risk-free rate and the
market return from Sodini et al. (2020). Their data contain monthly returns of the SIX index and the
yields of the one-month Swedish Treasury bill from 1983 to 2019. We transform these two series in
logs and sum up the resulting monthly values in each year to obtain an annual version (our annual
series starts from 1984 since the monthly data are available from February 1983). We then obtain the
final series by subtracting inflation.

Portfolio choice moments. We use the schedules of participation, expected excess returns and
idiosyncratic variance of households’ gross wealth portfolios over the distribution of net wealth
computed from the Swedish administrative data used in Bach et al. (2020). We refer to their paper
for more details on the data and the definition of different asset classes. Note that, differently from
them, we exclude pension and residential real estate wealth when computing portfolio choice moments.
Participation is a dummy equal to one if the household has a positive amount of wealth invested in
risky assets. As in Bach et al. (2020), the data cover the period 2000-2007.

Labor income. We recover the standard deviation and Kelly’s skewness of one- and five-year residual
log labor income changes and the autocorrelation at the first and fifth lag of residual log labor income
for Sweden from the Global Repository of Income Dynamics (Guvenen et al., 2022). The data are
available for the period 1985-2016 and we restrict the sample to males between 25 and 55 years
old. The series and more details on how the moments are computed can be found on their website:
https://www.grid-database.org.

As the measure of the aggregate component of labor income, we use the average of the logarithm of
individual income computed from the Swedish administrative data used in Hammar et al. (2022). The
series is in real terms (deflated with CPI, with 2021 as base year), includes labor and entrepreneurial
income and is net of taxable benefits. Because the data on the latter started to be recorded in 1974, the
log growth rates of aggregate income used in this paper cover the period 1975-2016. To be consistent
with GRID, the sample is restricted to males between 25 and 55 years old. In addition, observations
with a value lower than 100 SEK are excluded.
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B Numerical solution

B.1 Discretization and grids construction

Solving the model requires the computation of expectations of non trivial functions. In the most
general case, we need to compute expectations with respect the shocks A1, A2, q, Y, a and [. Normally
distributed random variables are discretized using Gaussian quadrature with #@ nodes. Furthermore,
note that the distributions of A1 is conditional on the realization of a stock market crash and, similarly,
that of Y on the realization of a tail event. This is taken into account simply by scaling the probability
of the discretized conditional distributions of these variables by the probability of these events. After
discretizing all shocks, we can proceed as follows: (i) for all the possible combinations of grid values
of these variables, we compute the value of the function (ii) we multiply it by the probability of that
particular combination of values (iii) once we have done this for all the possible combinations we sum
up all the function values obtained.

The solution procedure very often requires evaluating the value and policy functions at points off
the grid. We do not discretize the persistent component of individual income, which implies that we
need to interpolate these functions not only at points off the cash-on-hand grid, but also off the grid of
persistent income. We achieve this with 2-dimensional linear interpolation over the (0, I) grid.

We set up a grid for I8,C by constructing an exponentially spaced grid of (#I + 1)/2 points with
minimum value equal to zero and maximum value equal to Imax. This gives us the positive side of the
grid plus the central point (which is, therefore, equal to zero). We then obtain the negative (#I − 1)/2
values by taking the negative of the positive values just computed and obtain the full grid of #I points
by merging the two parts (after having excluded zero from one of them). For a given I8,C in the grid just
constructed, we obtain its next period value using the AR(1) process specified in the main text and
the discretized values of the conditional distribution of Y8,C . The advantage of this method is that it
requires to discretize just the latter distribution, which is easier than discretizing the full process of I8,C
given its non-standard features. In particular, the crucial connections between the higher moments of
I8,C and other variables are preserved.

Turning to cash-on-hand, we need to keep track of the minimum value of cash-on-hand implied
by each value in the grid of I8,C . Thus, we construct #I grids of cash-on-hand values – one for each
grid value of I8,C – each of which is an exponentially spaced grid of #0 points with minimum value
equal to the lowest possible realization of cash-on-hand implied by the specific grid value of I8,C under
consideration, model parameters and the discretized values of the shocks and maximum value equal
to 0max. Finally, as we will see below, to solve the model we do not need to keep track of :8,C and
38,C separately but just of their sum, which we denote B8,C and refer to as savings. The grid for B8,C
is an exponentially spaced grid of #0 points with minimum value equal to the borrowing limit and
maximum value equal to 0max.

Our choices for the numerical parameters mentioned above are #@ = 3, #I = 13, #0 = 200,
Imax = 3.5 and 0max = 4 · 106.29

29As described below, the model can be rescaled with aggregate income FC . Thus, in practice, we use cash-on-hand and
savings scaled by FC and the values reported refer to these two variables rescaled.
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B.2 Solving the optimization problem

To ease the exposition, in the following we will drop time (and indicate next period quantities with
the prime symbol) and individual specific indices and the dependence of the value and policy functions
on \. Let B = : + 3, so that, given the two inequality constraints of the problem B ≥ 3̄ exp (F). Define
b = :/(B − 3̄ exp (F)) and note that, since : ≥ 0 and : ≤ B − 3̄ exp (F), b can be seen as a risky
share. Specifically, it is the share of savings plus borrowing capacity invested in the risky asset.30
Furthermore, let '4 := ' − ' 5 denote the excess return. Then, the original problem can be rewritten
as:

+ (0, I, F) = max
2,B,b

{
(1 − X)21−k + X

(
E

[
+ (0′, I′, F′)1−W

] ) 1−k
1−W

} 1
1−k

subject to

0 = 2 + B + � 5 · exp(F)

0′ = (1 − gwealth)B + (1 − gcapinc)
[
(' 5 − 1)B + '4′b (B − 3̄ exp (F))

]
+

+ (exp(H′) + 1′) (1 − glabor)
B ≥ 3̄ · exp(F)

Now, note that as F follows a random walk and utility is homogeneous, we can reduce the
state-space by one dimension by scaling the problem with the aggregate income level. Let us define
Ĝ = G/exp(F) for a generic variable G representing 2, 0, B and 1. Equivalently, for log income H, we
define exp( Ĥ) = exp(H)/exp(F). Also define:

+̂ (0, I) = + (0, I, 0)

so that we can write:

+ (0, I, F) = exp(F)+
( 0

exp(F) , I, 0
)
= exp(F)+̂ (0̂, I)

The optimization problem for a participating agent (� = 1)31 can be written as:

+̂ (0̂, I) = max
2̂,B̂,b

{
(1 − X)2̂1−k + X

[
E
[
4(F

′−F) (1−W)+̂ (0̂′, I′)1−W
] ] 1−k

1−W

} 1
1−k

(B.1)

subject to

0̂ = 2̂ + B̂ + 5

0̂′ =
{
(1 − gwealth) B̂ + (1 − gcapinc)

[
(' 5 − 1) B̂ + '4′b ( B̂ − 3̄)

]}
4F−F

′+

+max
{
exp( Ĥ′), 1̂′

}
(1 − glabor)

B̂ ≥ 3̄

30The usual definition of the risky share does not include the borrowing capacity. Nevertheless, we think this is most sensible
quantity to use within our framework. Indeed, as in the model agents cannot have both cash and debt at the same time,
using :/(: + 3) leads to values outside the unit interval and using :/(: +max {0, 3}) would imply a unitary risky share
for everyone with debt.

31Non-participants solve the same problem with � and b equal to zero. We will describe below the optimal participation
choice.
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To simplify ideas and notation, let us introduce:

+̃ ( B̂, b, I) =
[
E
[
4(F

′−F) (1−W)+̂ (0̂′, I′)1−W
] ] 1−k

1−W (B.2)

When the optimal risky share is an interior one, i.e., b ∈ (0, 1), it satisfies the following first order
condition:

0 =
m+̃ ( B̂, b, I)

mb
=

1 − k
1 − W

[
+̃ ( B̂, b, I)

] W−k
1−k
E
[
(1 − W)4(F′−F) (1−W)+̂ (0̂′, I′)−W m+̂ (0̂

′, I′)
m0̂′

30̂′

3b

]
0 =E

[
4−W(F

′−F)+̂ (0̂′, I′)−W m+̂ (0̂
′, I′)

m0̂′
'4′

]
where for the last equation we used that +̃ ( B̂, b, I) ≠ 0. The first order condition for the consump-
tion/saving decision when the borrowing constraint is not binding reads:

(1 − X) (1 − k)2̂−k = X m+̃ ( B̂, b, I)
mB̂

(1 − X) (1 − k)2̂−k = X1 − k
1 − W

[
+̃ ( B̂, b, I)

] W−k
1−k
E
[
(1 − W)4(F′−F) (1−W)+̂ (0̂′, I′)−W m+̂ (0̂

′, I′)
m0̂′

30̂′

3B̂

]
(1 − X)2̂−k = X

[
+̃ ( B̂, b, I)

] W−k
1−k ×

× E
[
4−W(F

′−F)+̂ (0̂′, I′)−W m+̂ (0̂
′, I′)

m0̂′

(
(1 − gwealth) + (' 5 + b'4′ − 1) (1 − gcapinc)

)]
Finally, the envelope condition is:

m+̂ (0̂, I)
m0̂

=
1

1 − k
[
+̂ (0̂, I)

]k [
(1 − X) (1 − k)2̂−k 32̂

30̂
+ X

[m+̃ ( B̂, b, I)
mB̂

3B̂

30̂
+ m+̃ ( B̂, b, I)

mb

3b

30̂

] ]
m+̂ (0̂, I)
m0̂

= (1 − X)
[
+̂ (0̂, I)

]k
2̂−k

where the last steps uses m2̂
m0̂
+ mB̂
m0̂
= 1. After simplifying, the two first order conditions read:

0 = E
[
4−W(F

′−F)+̂ (0̂′, I′)k−W (2̂′)−k'4′
]

(B.3)

2̂−k = X
[
+̃ ( B̂, b, I)

] W−k
1−k
E
[
4−W(F

′−F)+̂ (0̂′, I′)k−W (2̂′)−k
(
(1 − gwealth) + (' 5 + b'4′ − 1) (1 − gcapinc)

)]
(B.4)

These two optimality conditions can be used to solve the model numerically with the endogenous
gridpoint method (Carroll, 2006), extended with a an additional root solving step to compute the
optimal risky share. We describe below the steps of the solution algorithm.

1. Let +̂ , 2̂ and b be the current guesses for the value function and for the policy functions of
consumption and risky share.32 For all types of agents and all persistent income states:
(a) Compute for all the values in the savings grid:

i. The corresponding optimal risky share b relying on the first order condition (B.3) as
follows:

• If m+̃ ( B̂, 0, I)/mb > 0, set b = 0, if m+̃ ( B̂, 1, I)/mb < 0, then set b = 1;
• Otherwise use the secant method to find b such that m+̃ ( B̂, b, I)/mb = 0.

This approach finds the optimum as the minimization problem is convex.
ii. +̃ using the value of b just computed in (B.2).

32As a starting point we take 2̂(0̂, I) = +̂ (0̂, I) = 0̂ − 3̄ and b equal to zero.
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iii. Optimal consumption 2̂ by solving (B.4) using the values of b and +̃ just computed.
iv. The value function +̂ by inserting 2̂ and +̃ just computed into (B.1) and cash-on-hand

as 0̂ = 2̂ + B̂ + � 5 .
v. Repeat steps i-iv for non-participants, that is, assuming b = � = 0.
vi. Take care of the borrowing limit:

• If the first value of cash-on-hand (corresponding to savings equal to the borrowing
limit) obtained for non-participants is higher than the corresponding value for
participants, then the borrowing constraint binds for the latter and we add this point
to the values obtained for non-participants (as agents who are at the borrowing
limit do not participate). This increases the accuracy of determining the optimal
threshold for participation.

• If the first value of cash-on-hand for non-participants is higher than the lowest value
of the cash-on-hand grid for the current persistent income state, then the borrowing
constraint binds also for them and we add such worst possible realization point to
the values obtained for non-participants. This makes sure that optimal policies of
constrained agents are accurately captured.

(b) Compare the value of participating with that of not participating to find the level of
cash-on-hand at which the former becomes higher than the latter. The final value and
policy functions correspond to those of non-participants for values of cash-on-hand below
the threshold and to those of participants for values above.

(c) Evaluate the relative change between the old and new consumption policy functions and of
the difference between the old and new risky share policy functions at each point of the
cash-on-hand grid and compute the !∞ norm of the resulting vectors.

2. If the maximum of the array containing the two values computed in the last step for each
type of agent and persistent income state is smaller than 10−3, then convergence is achieved.33
Otherwise, go back to step 1 using as new guesses the value and policy functions just obtained.

B.3 Simulation and stationary distribution

In this model the unique aggregate state is the distribution of agents across individual states
which are characterized by the triple (\8, I8,C , 08,C). As described before, the values of all these states
are approximated by a finite grid, therefore in the numerical setting the distribution object can be
described as a vector of length #C · #I · #0 – with #C being the number of agents’ types – containing
the probability weights corresponding to each individual state. To simulate the economy we need to
compute the transition probabilities of moving from one individual state to another, which naturally
depend on the actual value of the aggregate shocks. Thus, while – strictly speaking – the model has no
steady state, one could examine the dynamic properties of the distribution by characterizing a quasi
steady state distribution computed from aggregating the transition matrices corresponding to all values

33Using a smaller value would significantly increase the time to perform the estimation of preference parameters. We have
tried setting a lower tolerance to solve the model with the estimated parameters and found no significant changes in the
results.
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of the aggregate shocks we want to simulate into a quasi steady state transition matrix, as described
below. Intuitively, the quasi steady state distribution is generated by the unconditional transition
probabilities from one state to another, keeping the aggregate shocks unknown. Due to ergodicity, the
resulting distribution coincides with the limiting time average of the distributions obtained from a long
enough simulation of distributions generated by an actual series of aggregate shocks. Accordingly,
whenever referring to steady state objects, we always mean quasi steady state objects.

Conditional transition matrices. Given a realization of the aggregate shocks (A1, A2, q) for each
individual state we can compute future cash-on-hand and future persistent income corresponding to
each realization of idiosyncratic shocks, where the latter are simulated from the grids described in
B.1. Since in the generic case the simulated cash-on-hand and I values do not fall on grid points, the
conditional probability weight corresponding to each simulated (0, I) pair is distributed between the
neighboring four points proportionally to their relative distance. To avoid extrapolation errors, I is
truncated if it falls below −I<0G or above I<0G . From the transition probabilities of moving from one
individual state to another we can build up the transition matrices conditional on any realization of the
aggregate shocks.

Unconditional transition matrix. To obtain the steady state distribution we need an “average tran-
sition matrix”. One way of defining it would be taking the conditional transition matrix corresponding
to the average values of all aggregate shocks. However, a steady state computed from such a matrix
would miss all the consequences of cyclical movements in moments of idiosyncratic shocks, central
to our analysis. Therefore, we compute our steady state transition matrix as a weighted average of
the conditional transition matrices corresponding to shock values used in the policy iteration, where
weights are the probabilities that the given combination of shocks takes place. Hence, all entries in the
steady state matrix are the true unconditional transition probabilities of moving from one individual
state to another.

Stationary distribution. The steady state is found by iteration, i.e., by multiplying an arbitrary
vector with the unconditional transition matrix until convergence. Note that the aggregate state object is
a distribution over agent type, persistent income and cash-on-hand. Using the optimal policy function
for savings at each state of the resulting stationary distribution we can compute implied distribution of
savings, which is what we refer to as wealth distribution.

B.4 MIT shock

Let (Ash1 , A
sh
2 , q

sh) denote the values of the MIT shocks to the aggregate variables,34 ) sh the time
period of the shock and ) the total number of time periods to be simulated. The dynamic response
of the distribution of agents across individual states following the MIT shock is computed using the
generalized impulse response approach proposed by Koop et al. (1996). Specifically, we proceed as
follows:

34In the paper we consider a shock to A2, i.e., Ash1 = qsh = 0.
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1. Generate a time series of aggregate shocks
{
(A1,C , A2,C , qC)

})
C=1 by drawing values from the

discretized distributions of the three aggregate shocks.
2. Choose a starting distribution and multiply it with the transition matrix conditional on the

triplet (A1,1, A2,1, q1) realized in the first period to obtain the next period distribution. Repeat the
procedure until ) to obtain the evolution of the distribution without the shock.

3. Repeat the procedure at the previous point but at time ) sh use instead the transition matrix
conditional on (A1,) sh + Ash1 , A2,) sh + Ash2 , q) sh + qsh) which can be computed using the same
procedure outlined in Section B.3 for conditional transition matrices. This delivers the evolution
of the distribution with the shock.

4. Use the two evolutions to compute the time series of functions of the distribution with and
without the shock.

5. Repeat the above steps for = = 2, . . . , # times keeping the same starting distribution.
6. Compute at each (C, =) pair the difference between the time series of the desired quantity with

the shock and without the shock. Take the average over the # simulations to obtain the impulse
response.

For the simulations reported in the paper we use # = 30000, ) = 500 and ) sh = 100 and we use the
stationary distribution implied by each model as starting point.

C Estimation

As explained in the main text, the goal of the SMM estimation routine is to find a vector of
parameters Φ that minimizes the objective function defined by:√

3 (Φ)′Ω3 (Φ)
trace(Ω)

where 3 (Φ) is a vector containing deviations of model moments from their targets in the data and Ω is
a weighting matrix. We rescale the weighted moment deviations by the trace of the weighting matrix
and take the square root of the resulting quantity. In this way, when Ω is diagonal, the resulting value
can be interpreted as the weighted quadratic mean of the moment deviations.

The estimation procedure includes a global and a local stage. In the global stage, we generate a
Sobol sequence of length #glo over the parameter space and compute the objective function for each
vector of parameters in the sequence. In the local stage, we use the best #loc points from the global
stage – i.e. the points achieving the lowest objective function values in the global stage – as starting
guesses for running a local search with the Nelder-Mead algorithm. The global stage allows us to
identify the most promising regions of the parameter space to find the optimum, thus minimizing
the resources allocated for the computationally intensive local search algorithm.35 In the following,
we describe the specific settings adopted in each estimation step. In all cases, the implied objective
functions are not well-behaved and finding the optimizer is a complex task. In particular, estimation
of the participation cost, the borrowing limit, the share of types and the preference and idiosyncratic

35Note that while the global stage searches in a bounded region of the parameter space decided by the researcher – the one for
which the Sobol sequence is created – the local search step is not bounded and can potentially deliver any point.
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return risk parameters can take several days, even when using high-performance computing clusters, as
solving the optimization problem and computing the stationary distribution is time intensive. The code
implementing the estimation routine just described can be found in a dedicated Julia package (Azzalini
and Rácz, 2024).

C.1 Aggregate return and income process

The seven parameters (`
A
, `A , ?A , fA2 , 6, _AF, fq) governing the stochastic processes of aggregate

income and stock market returns are estimated with SMM to capture the joint dynamics of yearly
stock market returns and aggregate income growth in Sweden. More specifically, we target the mean,
standard deviation and skewness of the return of the Swedish stock market index and aggregate income
growth in Sweden, as well as the (one-year lagged) correlation between the two series.36 This results
in a total of seven moments to identify the seven parameters of interest. The outcome of the SMM
estimation is reported in Table C.1.

Estimated parameters
Stock market returns Aggregate income

`
A

`A ?A fA2 6 _AF fq

Estimate −0.343 0.181 0.168 0.173 −0.001 0.108 0.020
SE 0.127 0.042 0.084 0.050 0.011 0.077 0.005

Moments
Log returns Agg. income growth

Mean SD Skew Mean SD Skew Corr
Data 0.093 0.261 −0.752 0.010 0.029 −0.660 0.537
Model 0.093 0.261 −0.752 0.010 0.029 −0.660 0.537

Table C.1: Aggregate return and income processes estimation results. The stock market log return in year C is the sum of A1,C and A2,C . With
probability ?A there is a stock market crash and A1,C = `

A
, otherwise A1,C = `A . A2,C is normally distributed with zero mean and standard deviation fA2 .

The logarithm of aggregate income is modelled as FC = 6 + FC−1 + _AFA1,C + qC , with qC normally distributed with mean zero and standard deviation
fq . The estimation procedure targets mean, standard deviation, skewness of log stock market returns and aggregate income growth and their (one-year
lagged) correlation. Standard errors are computed using parametric bootstrap.

Overall, the estimated model replicates the desired features of the data. The probability of a stock
market crash is about 17%. In our sample, this corresponds to five and a half years, roughly matching
the crises at the beginning of the 90s, the dot-com bubble and the Great Recession. The predicted
average stock market drop during a crash is about 34% and the average return in normal times is
about 18%. As for aggregate income dynamics, the aggregate component of individuals’ log earnings
displays virtually zero drift and is positively correlated with the stock market (_AF = 0.108). In line
with the data, the implied predicted average aggregate income growth during crashes and normal times
is, respectively, about -3.8% and 1.9%.

Differences from Catherine (2021). In Catherine (2021), A1 is assumed to follow a mixed Normal
distribution and when estimating the parameter values, the kurtosis of stock market returns and
aggregate income changes are included among the targeted moments. We found that the empirical
values of kurtosis in Swedish aggregate data are very sensitive to the exact choice of the time period

36The sample used for log returns is 1984-2016 and for the log growth of aggregate income is 1975-2016.

48



and variable definitions. Furthermore, his framework cannot match the data moments well when the
kurtosis values of stock market and aggregate labor income shocks differ substantially. Therefore, we
exclude kurtosis from the set of targeted moments. As a consequence, we have to reduce the number
of free parameters, which is achieved via assuming that A1 follows a Bernoulli distribution instead of a
mixed Normal.

Technical details. To estimate the stochastic processes governing the aggregate market return and
income we set #glo and #loc equal to 10000 and 1000, respectively. We then simulate the processes
for 100000 periods and three economies and compute the moments averaging across the economies
and discarding the first 100 periods. As Ω is set equal to a diagonal unitary matrix all the targeted
moments have the same weight. Letting momdata and mommodel the vectors containing moments in the
data and in the model, respectively, for each moment 9 the deviation is computed as follows:

3 9 (Φ) =
momdata

9
−mommodel

9
(Φ)

momdata
9

C.2 Individual earnings process

Weestimate the parameters of the individual earnings process (d, ?Y, `Y, _YF, fY, fY, fa) targeting
three sets of moments: the cross-sectional standard deviation and Kelly’s skewness of log earnings
growth at the one- and five-year horizons and the first and fifth-order autocorrelation of log earnings.
We use the actual time series of aggregate income shocks realized over the period 1975-2016 to
simulate the individual income process and target the evolution of Kelly skewness from 1985 to 2016
and the time-series average of standard deviation and autocorrelation over the same period. This is
motivated by the fact that in our data the latter two quantities are relatively constant over time.37 We
obtain these moments for earnings net of age effects from the Global Repository of Income Dynamics
(GRID database, Guvenen et al., 2022), which, for Sweden, provides such quantities over the period
1985-2016. We restrict our analysis to males between 25 and 55 years old and we also remove a linear
time trend from the time series of the three moments. Table C.2 and Figure C.1 report the results.

37Busch et al. (2022) also find that the variance of earnings growth is flat and acyclical in Sweden, Germany and the United
States.
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Figure C.1: Fit of the estimated individual earnings process. The figure shows the time series of Kelly’s skewness of one- and five-year log earnings
growth implied by the model against their data equivalent obtained from the GRID database (Guvenen et al., 2022).

Estimated parameters
Persistent Transitory

d ?Y `Y _YF f
Y

fY fa

Estimate 0.907 0.139 −0.044 12.215 0.434 0.021 0.266
SE 0.004 0.010 0.002 1.051 0.038 0.019 0.004

Moments
St. Dev. Autocorr.

1y 5y 1st 5th
Data 0.425 0.605 0.712 0.485
Model 0.436 0.590 0.713 0.484

Table C.2: Individual earnings process estimation results. The individual-specific part of log earnings for individual 8 at time C is the sum of
a persistent and a transitory component, respectively, I8,C and a8,C . The latter is normally distributed with zero mean and standard deviation fa .
The persistent component follows an AR(1) process, I8,C = dI8,C−1 + Y8,C , where Y8,C is a mixture of Normals. That is, with probability ?Y a tail
event is realized and Y8,C is drawn from a Normal distribution with mean `

Y,C
= `Y + _YF (FC − FC−1) and standard deviation f2

Y . Otherwise,

Y8,C is drawn from a Normal distribution with mean `Y,C and standard deviation f2
Y . These shocks are also assumed to have zero mean, so that

?Y`
Y,C
+ (1 − ?Y)`Y,C = 0. The SMM estimation procedure targets the average standard deviation of one- and five-year residual log earnings growth

and the average first- and fifth-order autocorrelation of residual earnings in the period 1985-2016 and the time series of Kelly’s skewness of one- and
five-year residual log earnings growth over the same period. Standard errors are computed using parametric bootstrap.

The model performs relatively well in matching the data. Tail events happen with a probability of
about 14%, which implies that most of the workers receive persistent shocks from a Normal distribution
with relatively low standard deviation (0.021). The variance of the transitory shocks is 0.266, which
indicates that a relevant part of income shocks is not very persistent.

Differences from Catherine (2021). We deviate from Catherine (2021) in two distinct points. First,
to ensure tight identification of all parameters, we model the transitory part of log earnings, a8,C , as a
simple Normal shock instead of Normal distributions conditional on the realization of Y8,C . Indeed,
in our setting we found that while the total variance of the transitory component was well identified,
the variance of the transitory component conditional on Y8,C was not. Second, to make sure that the
persistence of income shocks is accurately captured, we added the autocorrelation of income changes to
the targeted moments. This choice resulted in a lower estimate of d, i.e., the autoregressive coefficient
of the persistent component of individuals’ log earnings, relative to studies featuring a similar income
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process in which autocovarices were not targeted, such as (Catherine, 2021; Guvenen et al., 2021,
2014).

Technical details. We estimate the stochastic process governing individual labor income setting
#glo to 106 and #loc to 5000. We simulate the labor income histories for 10000 individuals in five
economies over the period 1975-2016. We then compute the moments averaging across the economies.
We set Ω equal to a diagonal unitary matrix also in this case and compute the deviation for each
moment 9 as follows:

3 9 (Φ) =
momdata

9
−mommodel

9
(Φ)

momdata, norm
9

where momdata, norm
9

is a normalization factor which we set equal to the time series standard deviation
in the data of the moment considered.38

C.3 Preferences, idiosyncratic return risk and other model parameters

We estimate the model parameters related to agents’ preferences and idiosyncratic return risk, the
share of each type, the borrowing limit and the fixed participation cost setting #glo equal to 10000 and
#loc to 20.39 For every parameter vector we solve the model, compute the stationary distribution and
obtain the desired moments described from the latter. The weighting matrix puts 25% of the weight
on the wealth-to-income ratio, 25% on the share of agents with negative net wealth and splits the
remaining 50% equally between the portfolio schedules moments. For the wealth-to-income ratio and
the share of agents with negative net wealth, the deviation 3 (Φ) is computed using equation (C.1),
while for each moment of the portfolio schedules using equation (C.2) where the normalizing factor is
the standard deviation of all the moments comprised in each schedule.

The model equivalents of the portfolio choice quantities targeted in the estimation are defined as
follows. Participation is equal to one if b > 0. Expected excess returns are computed as the product
between b and the expected excess return of the systematic part of returns, that is, using the properties
of mixed and log-normal distributions:

bE
[
exp (A1 + A2) − ' 5

]
= b

[
?A exp (`

A
+ f2

A2/2) + (1 − ?A) exp (`A + f2
A2/2)

]
Finally, the share of idiosyncratic variance is equal to the variance in individual portfolios in

addition to the systematic return variance.40 Given our modeling assumptions, the former (as a function

38We repeated this procedure three times until the local optimizations converged to the same maximizer. In each of the two
additional estimations we restricted the search space of the global step to the most promising area found in the previous
iteration.

39For computational feasibility, we restrict the global stage of the estimation to search in regions of the parameter space in
which the predominant type has a higher probability of having jointly lower time preference rate, higher risk aversion, and
lower idiosyncratic return risk. That is, the searching region for the global stage includes (but it is not limited) more points
where the prevalent type has these characteristics. In an earlier version we did not apply this restriction and found similar,
but less tightly identified results. The local stage, as previously described, is instead not bounded by this constraint.

40The share of idiosyncratic variance for a wealth group is computed conditional on participation. Since in the data both
variables are increasing in wealth, if participation for a wealth group is zero we assign as share of idiosyncratic variance the
one implied by lowest Z across the agents’ types.
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of Z) is equal to:

V [exp (A1 + A2 + [)] (Z) = ?A exp
(
2`

A
+ 2f2

A2 + Z
2f2

A

)
+ (1 − ?A) exp

(
2`A + 2f2

A2 + Z
2f2

A

)
+

− ?2
A exp

(
2`

A
+ f2

A2

)
− (1 − ?A)2 exp

(
2`A + f2

A2

)
+

− 2?A (1 − ?A) exp
(
`
A
+ `A + f2

A2

)
where f2

A = ?A`
2
A
+ (1− ?A)`2

A − `2
A +f2

A2 and `A = ?A`A + (1− ?A)`A . Thus, the share of idiosyncratic
variance (as function of Z) is:

1 − V [exp (A1 + A2 + [)] (0)
V [exp (A1 + A2 + [)] (Z)

D Additional model specifications

D.1 Heterogeneity only in risk aversion

In order to understand the role of heterogeneity in risk aversion, we re-estimate the model allowing
for ex-ante heterogeneity only in this parameter while targeting the same moments as in the benchmark
case.

As high risk aversion implies low stock holdings but also high savings, generating a stock holder
type at the top of the wealth distribution is not straightforward when heterogeneity in X is missing.
As shown by the estimated values under this specification, the model partially achieves this result
by compensating the higher discount factor of type-one agents with a lower attitude towards risk
and the lower discount factor of type-two individuals with the higher capital gains generated by their
lower estimated W. The drawback of this outcome is that, as shown in the left panel of Figure D.1,
the expected excess returns overshoot the empirical values until the eight decile, especially at the
bottom. On the other hand, the model matches relatively well the pattern at the top but – as shown in
Table D.2 – the higher capital gains of the individuals at the top are not enough to generate the wealth
concentration found in the data, resulting in a lower Gini coefficient. Interestingly, as shown in Figures
E.2, E.3 and E.4 the model-implied marginal propensities and wealth mobility are not too far away
from the benchmark, which highlights the importance of heterogeneity in risk aversion for these two
dimensions.

Type 1 Type 2
Model X W Z X W Z Share of Type 1 5 3̄

Benchmark 0.924 9.891 0.543 0.966 2.671 0.825 0.901 0.001 −0.835
Only W 0.946 9.173 0.618 1.964 0.841 0.008 −0.659
No cy. skew. 0.946 15.462 0.721 0.938 5.453 0.602 0.838 0.032 −0.377
Hard-wired 0.902 10.334 0.975 0.871 −0.718

Table D.1: Estimated model parameters, benchmark model vs. alternative specifications. We solve each model setting inverse EIS (k) equal to
one. “Only W” the model with two types differing in W but not in X and Z . “No cy. skew.” the model without cyclical skewness in labor income shocks.
“Hard-wired” the model with risky share and share of idiosyncratic return variance exogenously set.
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Model Data
Share held by (%): Benchmark Only W No cy. skew. Hard-wired Sweden (2000-2007)

Q1 0.1 0.3 0.5 0.0 -1.1
Q2 4.6 5.9 6.0 3.8 2.8
Q3 8.8 11.6 12.0 7.9 8.7
Q4 15.8 20.3 22.0 14.9 19.4
Q5 70.6 61.9 59.5 73.3 70.2

90-95 % 11.9 12.6 12.9 13.5 13.4
95-99 % 22.5 17.3 16.6 24.2 17.9
Top 1 % 22.5 15.6 12.2 20.8 21.3

Wealth Gini 0.69 0.61 0.58 0.71 0.71
Table D.2: Wealth inequality, benchmark model vs. alternative specifications. The table reports the share of wealth held between different quantiles
of the wealth distribution and the Gini coefficient. “Only W” the model with two types differing in W but not in X and Z . “No cy. skew.” the model
without cyclical skewness in labor income shocks. “Hard-wired” the model with risky share and share of idiosyncratic return variance exogenously set
(in this case the eight shares are targeted in the estimation). The last column shows the data equivalents computed in the Swedish administrative data
compiled by Bach et al. (2020) – averaged over the 2000-2007 period.

Only W No cy. skew.

Figure D.1: Fit of the estimated model, benchmark vs. alternative specifications. The figure shows the schedules of expected excess returns
over the wealth distribution from the benchmark model, from different alternative specifications, and their data equivalents computed in the Swedish
administrative data used by Bach et al. (2020). The left panel shows the results for the model with two types differing only in W. The right panel for the
model without cyclical skewness in labor income shocks.

D.2 No cyclical skewness

We have discussed in Section 3.1 that modeling cyclical skewness of labor income shocks is
crucial to generate an increasing risky share at the bottom of the wealth distribution. In order to
understand how important this feature is for our results, we analyze a counterfactual economy in which
this channel is turned off. Specifically, we remove stock market crashes and make aggregate income
growth (and consequently also individual labor income) independent of aggregate returns. As a result,
aggregate income and returns are not correlated anymore and the skewness of labor income shocks is
fixed rather than cyclical.

When imposing these restrictions we make sure that the aggregate processes still match their
unconditional means and standard deviations. Specifically, to eliminate stock market crashes while
keeping the mean and variance of aggregate returns we set A1,C+1

8.8.3.∼ N
(
`A , f̃

2
A1

)
with `A = ?A`

A
+

(1 − ?A)`A and f̃2
A1 = ?A`

2
A
+ (1 − ?A)`2

A − `2
A . Similarly, shutting down the connection between

aggregate income and returns while keeping the mean and variance of the former is done by setting
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FC = 6 + FC−1 + _AF`A + qC and qC 8.8.3.∼ N
(
0, f̃2

q

)
with f̃2

q
= f2

q
+ _2

AFf̃
2
A1 . Finally, turning off cyclical

skewness in labor income shocks is done by using the expression for ΔFC just specified in the process
for the persistent component of labor income. Note that this still allows skewness in the distribution of
Y, but not cyclical variation. Therefore, we re-estimate this restricted version of the individual labor
income process by targeting the same moments as in the baseline and the average Kelly’s skewness of
log earnings growth at the one- and five-year horizons rather than its evolution from 1985 to 2016.41
As in the new specification _YF is not identified separately from `Y, we set the former parameter equal
to its value in the baseline. Table D.3 reports the estimation results which show that the model captures
well the targeted moments.

Estimated parameters
Persistent Transitory

d ?Y `Y f
Y

fY fa

Estimate 0.909 0.269 0.238 0.032 0.052 0.266
SE 0.001 0.004 0.004 0.008 0.004 0.000

Moments
Kelly’s Skew. St. Dev. Autocorr.
1y 5y 1y 5y 1st 5th

Data 0.038 0.025 0.425 0.605 0.712 0.485
Model 0.034 0.031 0.436 0.587 0.714 0.483

Table D.3: Individual earnings process estimation results, no cyclical skewness. The individual-specific part of log earnings for individual 8 at
time C is the sum of a persistent and a transitory component, respectively, I8,C and a8,C . The latter is normally distributed with zero mean and standard
deviation fa . The persistent component follows an AR(1) process, I8,C = dI8,C−1 + Y8,C , where Y8,C is a mixture of Normals. That is, with probability
?Y a tail event is realized and Y8,C is drawn from a Normal distribution with mean `

Y,C
= `Y + _YF

[
6 + _AF

(
?A `

A
+ (1 − ?A )`A

)]
and standard

deviation f2
Y . Otherwise, Y8,C is drawn from a Normal distribution with mean `Y,C and standard deviation f2

Y . These shocks are also assumed to have
zero mean, so that ?Y`

Y,C
+ (1 − ?Y)`Y,C = 0. As in this specification _YF is not identified separately from `Y , we set the former parameter equal to

its value in the baseline. The SMM estimation procedure targets the average Kelly’s skewness and standard deviation of one- and five-year residual log
earnings growth and the average first- and fifth-order autocorrelation of residual earnings in the period 1985-2016. Standard errors are computed using
parametric bootstrap.

The right panel in Figure D.1 shows the schedule of expected excess returns obtained with
this alternative specification. While the increasing relationship between this variable and wealth is
preserved until the 80th percentile, the direction flips after that point. The reason for this worse match
has to do with the inability of the new model to identify the same correlations between preference
parameters as in the benchmark: as shown in Table D.1, the type of agents with higher patience and
higher idiosyncratic return risk also have higher risk aversion.

Intuitively, without the additional risk in human capital generated by cyclical skewness, risk
aversion and/or the fixed participation cost need to increase to match a lower participation at the
bottom of the wealth distribution. This is exactly what the parameter estimates point to: the values
of W and 5 are higher than in the benchmark (the latter corresponds to a cost of about 8410 vs. 263
SEK per year, in 2021 terms). However, in addition to the unrealistically high estimated participation
cost, matching the extensive margin with this approach also delivers – as illustrated by Figure E.1 – an
almost binary distribution of participation, with too many wealth-rich individuals participating and too
few wealth-poor agents doing so.

41See Appendix C for the baseline estimation of the income process and the details of the estimation procedure.
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To highlight the crucial role of this model feature in correctly identifying the parameters governing
ex-ante individual heterogeneities in the model, note that while in the benchmark the cyclical skewness
channel was enough to prevent poor individuals from investing in the risky asset, now this result has to
be achieved through a compositional effect between a highly risk averse type, ending up on the bottom
of the wealth distribution, and a less risk averse majority. Consequently, no compositional effect is
active at the top of the wealth distribution, where the increasing pattern in the excess return and share
of idiosyncratic risk is completely missed. The lower expected excess returns in the right part of the
distribution also imply (together with the lower discount factors) less wealth concentration in the right
tail compared to the data, as reported in Table D.2.

While, as illustrated by Figure E.3, mobility is overall still well matched (except at the very top,
where it is slightly higher, see Figure E.4), the lower capital gains in the right part of the wealth
distribution suggest that the mechanisms underlying the flows are at odds with patterns in the data.
Finally, as seen in Figure E.2, the lack of individuals with low enough risk aversion at the top does not
deliver the increasing marginal propensity to invest in the risky asset as function of wealth obtained in
the benchmark.

D.3 Hard-wired portfolio choice

To relate our paper to the literature hardwiring portfolio allocations as a function of wealth, in
this section we investigate the role of endogenous portfolio choice between a safe and risky asset by
studying the predictions of a counterfactual model without this feature. Specifically, we compute
the average risky share and share of idiosyncratic return risk between 0.1 percent spaced quantiles
of the wealth distribution generated in our benchmark specification, fit the two relationships with
seventh-order polynomials of the logarithm of wealth, and use the resulting functions as model inputs
instead of optimally solving for b and using the type-dependent value of Z .

As key determinants of the three portfolio choice schedules are exogenous, re-estimation of the
hard-wired specification is, however, less straightforward than for the previous counterfactuals. We
follow Hubmer et al. (2021) and estimate the two types’ discount factor, a common value for their
risk aversion, the borrowing limit and the share of each type by directly targeting wealth inequality
moments.42 More specifically, in addition to the aggregate wealth-to-income ratio and the share of
agents with negative wealth, we match the share of wealth held by the eight wealth groups reported in
Table 3 for Sweden.

Table D.2 shows that the targeted wealth inequality moments are relatively well matched and
Table D.1 that to achieve this result a starker separation in discount factors is needed to compensate
the reduced compositional effects in portfolio choices.43 Interestingly, Figures E.2 and E.3 reveal
key differences in marginal propensities to consume and invest and wealth mobility between this
counterfactual specification and the benchmark. Similarly to the “Only X” case, the higher discount
factor of type-two individuals and the lack of type-dependent idiosyncratic risk generate lower mobility

42We set the fixed participation cost equal to zero to avoid forcing poor agents to pay it in every period even if it is suboptimal.
43We do not report the portfolio choice schedules as, by construction, they are almost identical to those obtained with the
benchmark.
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in the top quintile.44 Turning to marginal propensities, the hard-wired model delivers decreasing but
higher MPCs until about the 90th percentile, mainly as a consequence of the lower estimated discount
factor for type-one individuals. Additionally, the MPI in the risky asset in the benchmark between the
80th and 99th percentiles is lower as, conditional on type, in the hard-wired case the risky share is
increasing in wealth by construction rather than decreasing as in the benchmark.45

Figure D.2: Response to an aggregate return shock, benchmark vs. hard-wired portfolio choice. The figure shows the response of the share of
wealth held by the top 10% and top 1%, and of aggregate consumption to a ten percentage point increase in A2. “Hardwired portfolio choice” indicates
the model with risky share and share of idiosyncratic return variance exogenously set.

The impact of these differences can be seen in Figure D.2 which reports the response of the share
of wealth held by the wealthiest 10% and 1% and aggregate consumption after a ten percentage point
positive MIT shock in A2.46 On the one hand, the impact on wealth inequality is practically the same as
in the benchmark. The high persistence achieved via type dependence in the benchmark specification
is replicated by the increasing risk-taking of the rich after a return shock in the hardwired case. This
suggests that for the response of wealth inequality, matching the share of risky assets over the wealth

44Benhabib et al. (2019), instead, document reasonable levels of mobility in an extension of their model hard-wiring the
relationship between wealth and returns. While it is hard to tell apart the cause of this difference since several features
of their model are different from ours, a relevant factor might be the less steep relationship between these two variables
derived from PSID data adopted in their paper.

45The MPI in the risky asset in the hard-wired case decreases again in the top two wealth groups because the goal of the
counterfactual exercise requires us to target the risky share generated in the benchmark, which slightly underestimates the
expected excess return level in the data for those two wealth groups.

46In a similar vein, Hintermaier and Koeniger (2024) quantify the importance of portfolio choices for the response of
aggregate consumption to interest rate changes. Their focus is on the portfolio decision to own vs. rent housing.
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distribution in addition to the overall shape of the latter is more important than how this fit is achieved
(i.e., with endogenous portfolio choice or not). However, the response in aggregate consumption is
markedly different: it is about 25% larger on impact, as a consequence of the higher average MPC in
this alternative specification.47

E Supplementary tables and figures

Wealth rank in 7 years
Wealth rank today Bottom 90% Top 10%-5% Top 5%-1% Top 1%-0.1% Top 0.1%-0.01% Top 0.01%
Bottom 90% 0.97 0.03 0.01 0.00 0.00 0.00

[0.96] [0.03] [0.01] [0.00] [0.00] [0.00]
Top 10%-5% 0.56 0.29 0.14 0.00 0.00 0.00

[0.33] [0.44] [0.22] [0.01] [0.00] [0.00]
Top 5%-1% 0.09 0.28 0.56 0.07 0.00 0.00

[0.10] [0.21] [0.61] [0.08] [0.00] [0.00]
Top 1%-0.1% 0.00 0.00 0.35 0.61 0.04 0.00

[0.03] [0.04] [0.33] [0.56] [0.04] [0.00]
Top 0.1%-0.01% 0.00 0.00 0.00 0.38 0.58 0.04

[0.02] [0.01] [0.05] [0.39] [0.50] [0.03]
Top 0.01% 0.00 0.00 0.00 0.00 0.37 0.63

[0.02] [0.01] [0.02] [0.09] [0.34] [0.53]
Table E.1: Top wealth mobility. The table shows the share of agents moving across different groups of the wealth distribution over a period of 25
years under our benchmark specification. The numbers in square parentheses are taken from Appendix Table 3 in Bach et al. (2020), where the authors
report wealth mobility figures computed with Swedish administrative data between the years 2000 and 2007. Rows might not sum exactly to one due to
rounding.

47It is important to note that the above findings apply to the effect of a transitory shock. For permanent ones, we expect more
substantial differences between the hardwired and benchmark specifications.
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One type Only X

Only W No idio. ret.

No cy. skew. No cy. skew.

Figure E.1: Fit of the estimated model, benchmark vs. alternative specifications. The figure shows in the first five panels the schedules of
participation over the wealth distribution from the benchmark model (diamond markers, solid line), from different alternative specifications (starred
markers, solid line), and their data equivalents computed from the Swedish administrative data used by Bach et al. (2020) (circular markers, dashed line).
We solve each model setting inverse EIS (k) equal to one. “One type” reports the results for the model with one type of agents, i.e., no heterogeneity in
preference parameters and idiosyncratic return risk. “Only X” for the model with two types differing only in X. “Only W” for the model with two types
differing only in W. “No idio. ret.” for the model without idiosyncratic risk in returns in which we set Z equal to zero for both types. “No cy. skew.”
for the model without cyclical skewness in labor income shocks. The last panel compares the schedules of the share of idiosyncratic return risk in the
benchmark and in the model without cyclical skewness in labor income shocks (the different line patterns have the same meaning as in the fifth panel).
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One type Only X

Only W No idio. ret.

No cy. skew. Hard-wired

Figure E.2: Marginal propensities to consume and to invest over the wealth distribution, alternative specifications. The figure shows the schedules
of the marginal propensities to consume (darker color), to invest in the safe asset and to invest in the risky asset (lighter color) over the wealth distribution
obtained with alternative model specifications. “One type” indicates the model with one type of agents, i.e., no heterogeneity in preference parameters
and idiosyncratic return risk. “Only X” the model with two types differing in X but not in W and Z . “Only W” the model with two types differing in W

but not in X and Z . “No idio. ret.” the model without idiosyncratic risk in returns in which we set Z equal to zero for both types. “No cy. skew.” the
model without cyclical skewness in labor income shocks. For convenience we also report again the picture for the benchmark model. “Hard-wired” the
model with risky share and share of idiosyncratic return variance exogenously set.
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Benchmark One type

Only X Only W

No. idio. ret. No cy. skew.

Hard-wired Benhabib et al. (2019)

Figure E.3: Wealth mobility, benchmark vs. alternative specifications. The heatmaps show the share of agents moving across the quintiles of
the wealth distribution over a period of 25 years for different model specifications. “One type” indicates the model with one type of agents, i.e., no
heterogeneity in preference parameters and idiosyncratic return risk. “Only X” the model with two types differing in X but not in W and Z . “Only W”
the model with two types differing in W but not in X and Z . “No idio. ret.” the model without idiosyncratic risk in returns in which we set Z equal to
zero for both types. “No cy. skew.” the model without cyclical skewness in labor income shocks. “Hard-wired” the model with risky share and share of
idiosyncratic return variance exogenously set. For convenience we also present the parent-child intergenerational wealth mobility figures computed by
Charles and Hurst (2003) with PSID data and reported by Benhabib et al. (2019).
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Benchmark One type

Only X Only W

No. idio. ret. No cy. skew.

Hard-wired Bach et al. (2020)

Figure E.4: Top wealth mobility, benchmark vs. alternative specifications. The heatmaps show the share of agents moving across different groups
of the wealth distribution over a period of 7 years under different model specifications. “One type” indicates the model with one type of agents, i.e., no
heterogeneity in preference parameters and idiosyncratic return risk. “Only X” the model with two types differing in X but not in W and Z . “Only W”
the model with two types differing in W but not in X and Z . “No idio. ret.” the model without idiosyncratic risk in returns in which we set Z equal to
zero for both types. “No cy. skew.” the model without cyclical skewness in labor income shocks. “Hard-wired” the model with risky share and share of
idiosyncratic return variance exogenously set. For convenience we also present the wealth mobility figures reported in Appendix Table 3 in Bach et al.
(2020) computed with Swedish administrative data between the years 2000 and 2007.
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F Robustness checks

F.1 Residential real estate and pension wealth as safe assets

When estimating the benchmark specification, we assume that the risky share within residential
real estate and pension wealth is equal to the one found for the restricted portfolio including only
financial wealth, private equity and commercial real estate. The key reason for this choice is that
assuming these two assets to be fully safe could possibly underestimate the amount of risk borne
by agents in the middle and left part of the distribution for whom these two categories constitute a
substantial part of their wealth – see Figure 2 in Bach et al. (2020) – and, as a consequence, impact
the parameter estimates. In this section, therefore, we investigate how our results change when these
two asset types are classified as safe. Specifically, we recompute from the Swedish registry data the
portfolio schedules of expected excess returns, participation and share of idiosyncratic return variance
assuming that the risky share of residential real estate and pension wealth is zero and re-estimate our
benchmark specification.

As expected, Figure F.1 shows that the empirical portfolio schedules increase more markedly
at the top than before. As a consequence of the less smooth schedules, the algorithm matches them
through a starker separation of types, as shown by the values of the new parameter estimates in Table
F.1, which, in turn, generates too much concentration at the very top (see Table F.3).48

Summing up, the key message is that when residential real estate and pension wealth are classified
as safe, the mechanisms and implications of our model are overall the same.

Type 1 Type 2
Model X W Z X W Z Share of Type 1 5 3̄

Benchmark 0.924 9.891 0.543 0.966 2.671 0.825 0.901 0.001 −0.835
Res. & pens. safe 0.924 10.141 0.583 0.980 2.864 1.036 0.983 0.000 −0.863
EIS = 0.5 0.893 9.182 0.554 0.965 3.031 0.851 0.917 0.000 −0.804
EIS = 1.5 0.922 8.387 0.571 0.976 3.242 0.797 0.945 0.001 −0.367
EIS = {0.1, 1} 0.699 8.901 0.538 0.978 6.232 0.944 0.906 0.000 −0.763

Table F.1: Estimated model parameters, robustness. We solve our benchmark model setting inverse EIS (k) equal to one. “Res. & pens. safe”
indicates a model with all heterogeneities active as in the benchmark but targeting portfolio choice schedules with residential real estate and pension
wealth considered safe. “EIS = 0.5” indicates a model with all heterogeneities active as in the benchmark but k = 2 for both types. “EIS = 1.5” indicates
a model with all heterogeneities active as in the benchmark but k = 2/3 for both types. “EIS = {0.1, 1}” indicates a model with all heterogeneities
active as in the benchmark but k = 10 for type-one and k = 1 for type-two, in the spirit of Guvenen (2006).

48The wealth-to-income ratio and the share of agents with negative wealth are always almost perfectly matched when
re-estimating the model under all the alternative specifications considered in this robustness section.
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Column (a): EIS Column (b): Res. & pens. safe

Figure F.1: Fit of the estimated model, robustness. The figure compares the schedules of expected excess returns, participation and share of
idiosyncratic return variance over the wealth distribution from the benchmark model (diamond markers, solid line) with those obtained with different
EIS values in Column (a) and when targeting portfolio choice schedules with residential real estate and pension wealth considered safe in Column (b)
(starred markers, solid line). “EIS = 0.5” indicates a model with all heterogeneities active as in the benchmark but k = 2 for both types (starred markers
with four edges, solid line). “EIS = 1.5” indicates a model with all heterogeneities active as in the benchmark but k = 2/3 for both types (squared
markers, solid line). “EIS = {0.1, 1}” indicates a model with all heterogeneities active as in the benchmark but k = 10 for type-one and k = 1 for
type-two, in the spirit of Guvenen (2006) (vertical markers, solid line). Data schedules in column (b) (circular markers, solid line) were computed from
the Swedish administrative data used by Bach et al. (2020).
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Model Data
Share held by (%): Bench. Res. & pens. safe EIS = 0.5 EIS = 1.5 EIS = {0.1, 1} Sweden (2000-2007)

Q1 0.1 0.2 0.1 0.2 0.3 -1.1
Q2 4.6 4.7 4.4 3.1 4.9 2.8
Q3 8.8 8.8 8.8 6.0 10.0 8.7
Q4 15.8 15.1 15.8 10.7 18.9 19.4
Q5 70.6 71.2 70.9 80.0 65.8 70.2

90-95 % 11.9 9.5 11.9 9.4 14.3 13.4
95-99 % 22.5 15.5 21.6 28.8 20.4 17.9
Top 1 % 22.5 33.6 23.4 31.9 13.7 21.3

Wealth Gini 0.69 0.70 0.69 0.78 0.64 0.71
Table F.2: Wealth inequality, robustness. The table reports the share of wealth held between different quantiles of the wealth distribution and the Gini
coefficient. We solve our benchmark model setting inverse EIS (k) equal to one. “Res. & pens. safe” indicates a model with all heterogeneities active as
in the benchmark but targeting portfolio choice schedules with residential real estate and pension wealth considered safe. “EIS = 0.5” indicates a model
with all heterogeneities active as in the benchmark but k = 2 for both types. “EIS = 1.5” indicates a model with all heterogeneities active as in the
benchmark but k = 2/3 for both types. “EIS = {0.1, 1}” indicates a model with all heterogeneities active as in the benchmark but k = 10 for type-one
and k = 1 for type-two, in the spirit of Guvenen (2006). The last column present the data equivalents computed, with the Swedish administrative data
compiled by Bach et al. (2020) – averaged over the 2000-2007 period.

EIS = 0.5 EIS = 1.5

EIS = {0.1, 1} Res. & pens. safe

Figure F.2: Marginal propensities to consume and to invest over the wealth distribution, robustness. The figure shows the schedules of the
marginal propensities to consume (darker color), to invest in the safe asset and to invest in the risky asset (lighter color) over the wealth distribution
obtained with alternative model specifications. “EIS = 0.5” indicates a model with all heterogeneities active as in the benchmark but k = 2 for both
types. “EIS = 1.5” indicates a model with all heterogeneities active as in the benchmark but k = 2/3 for both types. “EIS = {0.1, 1}” indicates a
model with all heterogeneities active as in the benchmark but k = 10 for type-one and k = 1 for type-two, in the spirit of Guvenen (2006). “Res. &
pens. safe” indicates a model with all heterogeneities active as in the benchmark but targeting portfolio choice schedules with residential real estate and
pension wealth considered safe.
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EIS = 0.5 EIS = 1.5

EIS = {0.1, 1} Res. & pens. safe

Figure F.3: Wealth mobility, robustness. The heatmaps show the share of agents moving across the quintiles of the wealth distribution over a period
of 25 years for different model specifications. “EIS = 0.5” indicates a model with all heterogeneities active as in the benchmark but k = 2 for both
types. “EIS = 1.5” indicates a model with all heterogeneities active as in the benchmark but k = 2/3 for both types. “EIS = {0.1, 1}” indicates a
model with all heterogeneities active as in the benchmark but k = 10 for type-one and k = 1 for type-two, in the spirit of Guvenen (2006). “Res. &
pens. safe” indicates a model with all heterogeneities active as in the benchmark but targeting portfolio choice schedules with residential real estate and
pension wealth considered safe.

F.2 Different EIS values

As discussed in Section 3, the lack of assets with different liquidity in our model prevents us from
jointly identifying the EIS and discount factor. For this reason, in our benchmark specification we
set k equal to one for both types. In this section, as a robustness, we check how our results change
when using different values for this parameter. Specifically, we re-estimate three versions of the model
with all heterogeneities active as in the benchmark: in the first we assume that both agents have EIS
equal to 0.5 (k = 2), in the second that they both have EIS equal to 1.5 (k = 2/3) and in the third that
type-one agents have EIS equal to 0.1 (k = 10) while type-two agents equal to 1.49

As shown in Figure F.1, the overall match of these alternative specifications replicates quite
similarly the patterns in the benchmark. Table F.1 reports the estimated parameters and Table F.3 the
implied wealth inequality moments. A lower EIS value means a stronger consumption smoothing
motive, which implies higher willingness to insure against shocks especially for agents close to the
borrowing constraint. To counteract this force, the estimated discount factor and risk aversion for
type-one agents are lower. Yet, the changes in parameters are not sizable and this alternative model also
delivers a good match of wealth inequality and similar patterns for mobility and marginal propensities

49The third parametrization is in the spirit of Guvenen (2006), where heterogeneity in EIS generates wealth dispersion as low
EIS agents are exogenously restricted from investing in the risky asset while high EIS agents are not. In his model there are
also two types of agents, non-stockholders with EIS equal to 0.1 and stockholders with EIS equal to 1.
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(see Figures F.2 and F.3). On the other hand, while generating higher MPCs at the bottom of the
wealth distribution, the higher X for type-two obtained when EIS is equal to 1.5 delivers too much
concentration at the top. Turning to the case in which EIS is 0.1 for type-one and 1 for type-two agents,
the estimation balances the lower EIS of the former individuals by substantially reducing their discount
factor and risk aversion. The opposite happens for the latter type, whose idiosyncratic return risk is
also increased. However, to compensate for the reduction in total savings from the new parameters of
the other type, more patient agents start to populate the right tail of the wealth distribution at lower
quantiles compared to the benchmark, which, together with their higher risk aversion, results in a too
mild increase in expected excess returns at the top, in a lower share of wealth held by the top 1% and in
lower top mobility.

In conclusion, there are two key lessons from this exercise. First, in the EIS = 0.5 case we
get similar results as in our benchmark as the estimation procedure adjusts the other parameters –
especially the discount factor – accordingly. This shows the robustness of one of the key mechanisms
behind our results, namely the compositional effects ensuing from the separation of the two types over
the distribution, but also confirms our discussion in Section 3 on the difficulty of identifying both X
and k without heterogeneity in assets’ liquidity. Nevertheless, some EIS values (i.e., EIS = {0.1, 1})
do not even allow a satisfactory match of the targeted schedules. Second, too high EIS values for
both individuals would generate counterfactually too large wealth holdings at the top. This is because
the estimation cannot compensate by raising the discount factor of type-one agents, as doing that
would require also an increase in the patience of the other type to keep enough separation to match the
increasing portfolio schedules which, in turn, would generate a too high wealth-to-income ratio. As a
consequence, only X of type-two individuals is increased, which allows to get a good match of the
targeted moments but a worse fit of (untargeted) wealth inequality moments.
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